Smart City Gnosys

Smart city article details

Title Analyzing Distributed Deep Neural Network Deployment On Edge And Cloud Nodes In Iot Systems
ID_Doc 9491
Authors Ashouri M.; Lorig F.; Davidsson P.; Spalazzese R.; Svorobej S.
Year 2020
Published Proceedings - 2020 IEEE 13th International Conference on Edge Computing, EDGE 2020
DOI http://dx.doi.org/10.1109/EDGE50951.2020.00017
Abstract For the efficient execution of Deep Neural Networks (DNN) in the Internet of Things, computation tasks can be distributed and deployed on edge nodes. In contrast to deploying all computation to the cloud, the use of Distributed DNN (DDNN) often results in a reduced amount of data that is sent through the network and thus might increase the overall performance of the system. However, finding an appropriate deployment scenario is often a complex task and requires considering several criteria. In this paper, we introduce a multicriteria decision-making method based on the Analytical Hierarchy Process for the comparison and selection of deployment alternatives. We use the RECAP simulation framework to model and simulate DDNN deployments on different scales to provide a comprehensive assessment of deployments to system designers. In a case study, we apply the method to a smart city scenario where different distributions and deployments of a DNN are analyzed and compared. © 2020 IEEE.
Author Keywords Distributed Deep Neural Networks; Edge Computing; Internet of Things; Simulation; Smart Cities


Similar Articles


Id Similarity Authors Title Published
18071 View0.885Bushehrian O.; Moazeni A.Deep Reinforcement Learning-Based Optimal Deployment Of Iot Machine Learning Jobs In Fog Computing ArchitectureComputing, 107, 1 (2025)
1511 View0.865Gali M.; Mahamkali A.A Distributed Deep Meta Learning Based Task Offloading Framework For Smart City Internet Of Things With Edge-Cloud ComputingJournal of Internet Services and Information Security, 12, 4 (2022)
20553 View0.863Li Q.; Huang L.; Tong Z.; Du T.-T.; Zhang J.; Wang S.-C.Dissec: A Distributed Deep Neural Network Inference Scheduling Strategy For Edge ClustersNeurocomputing, 500 (2022)
14476 View0.86Lilhore U.K.; Simaiya S.; Sharma Y.K.; Rai A.K.; Padmaja S.M.; Nabilal K.V.; Kumar V.; Alroobaea R.; Alsufyani H.Cloud-Edge Hybrid Deep Learning Framework For Scalable Iot Resource OptimizationJournal of Cloud Computing, 14, 1 (2025)
7415 View0.853Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of ThingsSustainable Computing: Informatics and Systems, 43 (2024)
41334 View0.853Xiao D.; Wang X.; Yang Z.; Huang C.Partial Distributed Deep Learning Inference Model For Image Based Edge Device ClusterProceedings of 2024 8th International Conference on Electronic Information Technology and Computer Engineering, EITCE 2024 (2025)