Smart City Gnosys

Smart city article details

Title An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of Things
ID_Doc 7415
Authors Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.
Year 2024
Published Sustainable Computing: Informatics and Systems, 43
DOI http://dx.doi.org/10.1016/j.suscom.2024.100992
Abstract The Internet of Things (IoTs) has transformed the digital landscape by interconnecting billions of devices worldwide, paving the way for smart cities, homes, and industries. With the exponential growth of IoT devices and the vast amount of data they generate, concerns have arisen regarding efficient task-offloading strategies. Traditional cloud and edge computing methods, paired with basic Machine Learning (ML) algorithms, face several challenges in this regard. In this paper, we propose a novel approach to task offloading in a Device-to-Device (D2D)-Edge-Cloud computing using the Rainbow Deep Q-Network (DQN), an advanced Deep Reinforcement Learning (DRL) algorithm. This algorithm utilizes advanced neural networks to optimize task offloading in the three-tier framework. It balances the trade-offs among D2D, Device-to-Edge (D2E), and Device/Edge-to-Cloud (D2C/E2C) communications, benefiting both end users and servers. These networks leverage Deep Learning (DL) to discern patterns, evaluate potential offloading decisions, and adapt in real time to dynamic environments. We compared our proposed algorithm against other state-of-the-art methods. Through rigorous simulations, we achieved remarkable improvements across key metrics: an increase in energy efficiency by 29.8%, a 27.5% reduction in latency, and a 43.1% surge in utility. © 2024
Author Keywords Cloud computing; Device-to-Device communications; Edge computing; Internet of Things; Task offloading


Similar Articles


Id Similarity Authors Title Published
46071 View0.932Cui X.Resource Allocation In Iot Edge Computing Networks Based On Reinforcement LearningAdvances in Transdisciplinary Engineering, 70 (2025)
23430 View0.918Sellami B.; Hakiri A.; Yahia S.B.; Berthou P.Energy-Aware Task Scheduling And Offloading Using Deep Reinforcement Learning In Sdn-Enabled Iot NetworkComputer Networks, 210 (2022)
1511 View0.913Gali M.; Mahamkali A.A Distributed Deep Meta Learning Based Task Offloading Framework For Smart City Internet Of Things With Edge-Cloud ComputingJournal of Internet Services and Information Security, 12, 4 (2022)
34433 View0.911Yao R.; Liu L.; Zuo X.; Yu L.; Xu J.; Fan Y.; Li W.Joint Task Offloading And Power Control Optimization For Iot-Enabled Smart Cities: An Energy-Efficient Coordination Via Deep Reinforcement LearningIEEE Transactions on Consumer Electronics (2025)
54435 View0.905Chabi Sika Boni A.K.; Hassan H.; Drira K.Task Offloading In Autonomous Iot Systems Using Deep Reinforcement Learning And Ns3-GymACM International Conference Proceeding Series (2021)
14476 View0.9Lilhore U.K.; Simaiya S.; Sharma Y.K.; Rai A.K.; Padmaja S.M.; Nabilal K.V.; Kumar V.; Alroobaea R.; Alsufyani H.Cloud-Edge Hybrid Deep Learning Framework For Scalable Iot Resource OptimizationJournal of Cloud Computing, 14, 1 (2025)
26323 View0.898Chen X.; Liu G.Federated Deep Reinforcement Learning-Based Task Offloading And Resource Allocation For Smart Cities In A Mobile Edge NetworkSensors, 22, 13 (2022)
21063 View0.897He B.; Li H.; Chen T.Drl-Based Computing Offloading Approach For Large-Scale Heterogeneous Tasks In Mobile Edge ComputingConcurrency and Computation: Practice and Experience, 36, 19 (2024)
26370 View0.893Han Y.; Li D.; Qi H.; Ren J.; Wang X.Federated Learning-Based Computation Offloading Optimization In Edge Computing-Supported Internet Of ThingsACM International Conference Proceeding Series (2019)
38090 View0.893Jiao T.; Feng X.; Guo C.; Wang D.; Song J.Multi-Agent Deep Reinforcement Learning For Efficient Computation Offloading In Mobile Edge ComputingComputers, Materials and Continua, 76, 3 (2023)