Smart City Gnosys

Smart city article details

Title A Distributed Deep Meta Learning Based Task Offloading Framework For Smart City Internet Of Things With Edge-Cloud Computing
ID_Doc 1511
Authors Gali M.; Mahamkali A.
Year 2022
Published Journal of Internet Services and Information Security, 12, 4
DOI http://dx.doi.org/10.58346/JISIS.2022.I4.016
Abstract IoT (Internet of Things) and cloud computing are essential components of constructing smart cities and provide multiple smart services to end consumers. Because IoT devices are data-intensive and resource-constrained, using edge computing technologies might provide considerable benefits to the smart environment. However, heterogeneous clouds where ECSs (Edge Cloud Systems) and centralized clouds interact for satisfying demands of IoT applications, challenges in task offloading exist. When IoT system's environments change, such as the edge server's performances or the bandwidth, solutions based on DLTs (Deep Learning Techniques) must train from scratch. A meta-algorithm known as DDMTO (Distributed Deep Meta learning-driven Task Offloading) is presented to solve the issue of poor portability and ensure that DNNs (Deep Neural Networks) are utilised to make offloading decisions effectively and efficiently. These networks have their output which receives inputs from hidden layers in BP algorithm compute outputs. Inputs are compared to desired outputs and errors are traced from outputs to hidden layers and from hidden to input layers based on disparities. When flows are restored, neuron weights get altered. Epochs are cycles that traverse from inputs to outputs and backwards from outputs to inputs. Previously known inputs are fed into NNs (neural networks) which then generate known outputs called network training. Existing offloading systems ignore heterogeneous cloud co-operations which is overcome for providing better performances while significantly reducing computing complexities. © 2022, Innovative Information Science and Technology Research Group. All rights reserved.
Author Keywords Bandwidth; Deep Neural Network; Edge Computing; Internet of Things; Meta Learning and Offloading Strategy; Task Offloading


Similar Articles


Id Similarity Authors Title Published
7415 View0.913Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of ThingsSustainable Computing: Informatics and Systems, 43 (2024)
21852 View0.911Zhang L.; Wu J.; Mumtaz S.; Li J.; Gacanin H.; Rodrigues J.J.P.C.Edge-To-Edge Cooperative Artificial Intelligence In Smart Cities With On-Demand Learning OffloadingProceedings - IEEE Global Communications Conference, GLOBECOM (2019)
1144 View0.899Chaudhary N.K.; Rath A.; Babbar G.; Verma A.; Sinha S.D.; Mohapatra H.A Critical Analysis On Edge Computing In Smart City ApplicationsRisk-Based Approach to Secure Cloud Migration (2025)
32524 View0.893Vigenesh M.; Katyal A.; Hemalatha S.; Ahluwalia G.; Kukreja M.; Mathurkar P.Intelligent Resource Scheduling For Edge-Integrated Iot Using Deep Learning2024 IEEE 4th International Conference on ICT in Business Industry and Government, ICTBIG 2024 (2024)
54431 View0.89Abdullaev I.; Prodanova N.; Bhaskar K.A.; Lydia E.L.; Kadry S.; Kim J.Task Offloading And Resource Allocation In Iot Based Mobile Edge Computing Using Deep LearningComputers, Materials and Continua, 76, 2 (2023)
40900 View0.888Rahmani A.M.; Haider A.; Khoshvaght P.; Gharehchopogh F.S.; Moghaddasi K.; Rajabi S.; Hosseinzadeh M.Optimizing Task Offloading With Metaheuristic Algorithms Across Cloud, Fog, And Edge Computing Networks: A Comprehensive Survey And State-Of-The-Art SchemesSustainable Computing: Informatics and Systems, 45 (2025)
34433 View0.885Yao R.; Liu L.; Zuo X.; Yu L.; Xu J.; Fan Y.; Li W.Joint Task Offloading And Power Control Optimization For Iot-Enabled Smart Cities: An Energy-Efficient Coordination Via Deep Reinforcement LearningIEEE Transactions on Consumer Electronics (2025)
12088 View0.88Balicki, J; Balicka, H; Dryja, PBig Data From Sensor Network Via Internet Of Things To Edge Deep Learning For Smart CityCOMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2021, 12883 (2021)
21825 View0.879Peng K.; Zhang H.; Zhao B.; Liu P.Edge-Cloud Collaborative Computation Offloading For Federated Learning In Smart CityProceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022 (2022)
26323 View0.878Chen X.; Liu G.Federated Deep Reinforcement Learning-Based Task Offloading And Resource Allocation For Smart Cities In A Mobile Edge NetworkSensors, 22, 13 (2022)