Smart City Gnosys

Smart city article details

Title Cloud-Edge Hybrid Deep Learning Framework For Scalable Iot Resource Optimization
ID_Doc 14476
Authors Lilhore U.K.; Simaiya S.; Sharma Y.K.; Rai A.K.; Padmaja S.M.; Nabilal K.V.; Kumar V.; Alroobaea R.; Alsufyani H.
Year 2025
Published Journal of Cloud Computing, 14, 1
DOI http://dx.doi.org/10.1186/s13677-025-00729-w
Abstract In the dynamic environment of the Internet of Things (IoT), edge and cloud computing play critical roles in analysing and storing data from numerous connected devices to produce valuable insights. Efficient resource allocation and workload distribution are vital to ensuring continuous and reliable service in growing IoT ecosystems with increasing data volumes and changing application demands. This study proposes a novel optimisation approach utilising deep learning to tackle these challenges. The integration of Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO) offers a practical approach to addressing the dynamic characteristics of IoT applications. The hybrid algorithm's primary characteristic is its capacity to simultaneously fulfil multiple objectives, including reducing response times, enhancing resource efficiency, and decreasing operational costs. DQN facilitates the formulation of optimal resource allocation strategies in intricate and unpredictable environments. PPO enhances policies in continuous action spaces to guarantee reliable performance in real-time, dynamic IoT settings. This method achieves an optimal equilibrium between policy learning and optimisation, rendering it suitable for contemporary IoT systems. This method improves numerous IoT applications, including smart cities, industrial automation, and healthcare. The hybrid DQN-PPO-GNN-RL model addresses bottlenecks by dynamically managing computing and network resources, allowing for efficient operations in low-latency, high-demand environments such as autonomous systems, sensor networks, and real-time monitoring. The use of Graph Neural Networks (GNNs) improves the accuracy of resource representation, while reinforcement learning-based scheduling allows for seamless adaptation to changing workloads. Simulations using real-world IoT data on the iFogSim platform showed significant improvements: task scheduling time was reduced by 21%, operational costs by 17%, and energy consumption by 22%. The method reliably provided equitable resource distribution, with values between 0.93 and 0.99, guaranteeing efficient allocation throughout the network. This hybrid methodology establishes a novel benchmark for scalable, real-time resource management in extensive, data-centric IoT ecosystems, consequently enhancing system performance and operational efficiency. © The Author(s) 2025.
Author Keywords Cloud load balancing; Deep Q-Networks; GNN; IoT edge networks; Proximal policy optimization; Reinforcement learning


Similar Articles


Id Similarity Authors Title Published
32524 View0.915Vigenesh M.; Katyal A.; Hemalatha S.; Ahluwalia G.; Kukreja M.; Mathurkar P.Intelligent Resource Scheduling For Edge-Integrated Iot Using Deep Learning2024 IEEE 4th International Conference on ICT in Business Industry and Government, ICTBIG 2024 (2024)
46071 View0.902Cui X.Resource Allocation In Iot Edge Computing Networks Based On Reinforcement LearningAdvances in Transdisciplinary Engineering, 70 (2025)
7415 View0.9Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of ThingsSustainable Computing: Informatics and Systems, 43 (2024)
18096 View0.888Qadeer A.; Lee M.J.Deep-Deterministic Policy Gradient Based Multi-Resource Allocation In Edge-Cloud System: A Distributed ApproachIEEE Access, 11 (2023)
6307 View0.887Zhou L.; Samavatian M.H.; Bacha A.; Majumdar S.; Teodorescu R.Adaptive Parallel Execution Of Deep Neural Networks On Heterogeneous Edge DevicesProceedings of the 4th ACM/IEEE Symposium on Edge Computing, SEC 2019 (2019)
23430 View0.887Sellami B.; Hakiri A.; Yahia S.B.; Berthou P.Energy-Aware Task Scheduling And Offloading Using Deep Reinforcement Learning In Sdn-Enabled Iot NetworkComputer Networks, 210 (2022)
18071 View0.884Bushehrian O.; Moazeni A.Deep Reinforcement Learning-Based Optimal Deployment Of Iot Machine Learning Jobs In Fog Computing ArchitectureComputing, 107, 1 (2025)
32274 View0.882Haj Hussein D.; Ibnkahla M.Intelligent And Autonomous Edge Slicing For Iot SystemsIEEE Internet of Things Journal, 12, 12 (2025)
36528 View0.88Shruthi G.; Mundada M.R.; Sowmya B.J.; Supreeth S.Mayfly Taylor Optimisation-Based Scheduling Algorithm With Deep Reinforcement Learning For Dynamic Scheduling In Fog-Cloud ComputingApplied Computational Intelligence and Soft Computing, 2022 (2022)
21815 View0.873Murthy V.S.N.; Kumari R.; Goyal M.; Dubey P.; Meenakshi; Manikandan S.; Ramesh P.Edge-Ai In Iot: Leveraging Cloud Computing And Big Data For Intelligent Decision-MakingJournal of Information Systems Engineering and Management, 10 (2025)