Smart City Gnosys

Smart city article details

Title Multi-Agent Deep Reinforcement Learning For Efficient Computation Offloading In Mobile Edge Computing
ID_Doc 38090
Authors Jiao T.; Feng X.; Guo C.; Wang D.; Song J.
Year 2023
Published Computers, Materials and Continua, 76, 3
DOI http://dx.doi.org/10.32604/cmc.2023.040068
Abstract Mobile-edge computing (MEC) is a promising technology for the fifth-generation (5G) and sixth-generation (6G) architectures, which provides resourceful computing capabilities for Internet of Things (IoT) devices, such as virtual reality, mobile devices, and smart cities. In general, these IoT applications always bring higher energy consumption than traditional applications, which are usually energy-constrained. To provide persistent energy, many references have studied the offloading problem to save energy consumption. However, the dynamic environment dramatically increases the optimization difficulty of the offloading decision. In this paper, we aim to minimize the energy consumption of the entire MEC system under the latency constraint by fully considering the dynamic environment. Under Markov games, we propose a multi-agent deep reinforcement learning approach based on the bi-level actor-critic learning structure to jointly optimize the offloading decision and resource allocation, which can solve the combinatorial optimization problem using an asymmetric method and compute the Stackelberg equilibrium as a better convergence point than Nash equilibrium in terms of Pareto superiority. Our method can better adapt to a dynamic environment during the data transmission than the single-agent strategy and can effectively tackle the coordination problem in the multi-agent environment. The simulation results show that the proposed method could decrease the total computational overhead by 17.8% compared to the actor-critic-based method and reduce the total computational overhead by 31.3%, 36.5%, and 44.7% compared with random offloading, all local execution, and all offloading execution, respectively. © 2023 Tech Science Press. All rights reserved.
Author Keywords Computation offloading; energy efficiency; latency; mobile-edge computing; multi-agent deep reinforcement learning


Similar Articles


Id Similarity Authors Title Published
34433 View0.927Yao R.; Liu L.; Zuo X.; Yu L.; Xu J.; Fan Y.; Li W.Joint Task Offloading And Power Control Optimization For Iot-Enabled Smart Cities: An Energy-Efficient Coordination Via Deep Reinforcement LearningIEEE Transactions on Consumer Electronics (2025)
40621 View0.926Hassan M.T.; Hosain M.K.Optimization Of Computation Offloading In Mobile-Edge Computing Networks With Deep Reinforcement Approach2024 IEEE International Conference on Communication, Computing and Signal Processing, IICCCS 2024 (2024)
40838 View0.919Liu L.; Xu Z.Optimizing Lightweight Neural Networks For Efficient Mobile Edge ComputingScientific Reports, 15, 1 (2025)
38241 View0.909Wu B.; Ma L.; Ji Y.; Cong J.; Xu M.; Zhao J.; Yang Y.Multi-Layer Guided Reinforcement Learning Task Offloading Based On Softmax Policy In Smart CitiesComputer Communications, 235 (2025)
21789 View0.905Tian K.; Chai H.; Liu Y.; Liu B.Edge Intelligence Empowered Dynamic Offloading And Resource Management Of Mec For Smart City Internet Of ThingsElectronics (Switzerland), 11, 6 (2022)
18051 View0.905Agbaje P.; Nwafor E.; Olufowobi H.Deep Reinforcement Learning For Energy-Efficient Task Offloading In Cooperative Vehicular Edge NetworksIEEE International Conference on Industrial Informatics (INDIN), 2023-July (2023)
46071 View0.904Cui X.Resource Allocation In Iot Edge Computing Networks Based On Reinforcement LearningAdvances in Transdisciplinary Engineering, 70 (2025)
54442 View0.904Zhao X.; Liu M.; Li M.Task Offloading Strategy And Scheduling Optimization For Internet Of Vehicles Based On Deep Reinforcement LearningAd Hoc Networks, 147 (2023)
34353 View0.902Chen Z.; Xiong B.; Chen X.; Min G.; Li J.Joint Computation Offloading And Resource Allocation In Multi-Edge Smart Communities With Personalized Federated Deep Reinforcement LearningIEEE Transactions on Mobile Computing, 23, 12 (2024)
18069 View0.899Li W.; Chen X.; Jiao L.; Wang Y.Deep Reinforcement Learning-Based Intelligent Task Offloading And Dynamic Resource Allocation In 6G Smart CityProceedings - IEEE Symposium on Computers and Communications, 2023-July (2023)