Smart City Gnosys

Smart city article details

Title Towards Efficient Energy Utilization Using Big Data Analytics In Smart Cities For Electricity Theft Detection
ID_Doc 58117
Authors Arif A.; Alghamdi T.A.; Khan Z.A.; Javaid N.
Year 2022
Published Big Data Research, 27
DOI http://dx.doi.org/10.1016/j.bdr.2021.100285
Abstract In energy sectors, power utilities face financial losses due to Electricity Theft (ET). It happens when electricity is consumed without billing. Several methods are developed to detect ET automatically. Most of these methods only assess Electricity Consumption (EC) records. However, it is challenging to detect fraudulent consumers by only observing EC records because of diverse theft strategies (line tapping, meter tampering, etc.) and the irregularity of ET behavior. Furthermore, many methods have poor classification accuracy due to imbalanced data. This work proposes two novel methods to resolve the above-mentioned issues: Tomek Link Borderline Synthetic Minority Oversampling Technique with Support Vector Machine (TBSSVM) and Temporal Convolutional Network with Enhanced Multi-Layer Perceptron (TCN-EMLP). The former resamples the data by balancing the majority and minority class instances. Whereas, the latter classifies normal and fraudulent consumers. Moreover, deep learning models suffer from high variance in their final results due to the assignment of different weights. Therefore, an averaging ensemble strategy is applied in this work to reduce the high variance. Furthermore, State Grid Cooperation of China (SGCC) and Pakistan Residential Electricity Consumption (PRECON) datasets are used in this paper for performing the simulations. SGCC is an imbalanced and labeled dataset while PRECON is an unlabeled dataset comprised of normal consumers' EC records (sequential) and auxiliary (non-sequential) data. Simulation results show that the proposed model outperforms the baselines, i.e., wide and deep convolutional neural network, extreme gradient boosting, long short-term memory with multi-layer perceptron, etc., in terms of ET detection. © 2021 Elsevier Inc.
Author Keywords Deep learning; Electricity theft detection; Machine learning; Multi-layer perceptron; Smart grids


Similar Articles


Id Similarity Authors Title Published
8616 View0.92Nandhini N.; Manikandan V.; Elango S.An Interpretable Generalized Additive Neural Networks For Electricity Theft Detection In Smart Cities Using Balanced Data And Intelligent Grid ManagementEnergy and Buildings, 346 (2025)
37138 View0.919Ali A.; Khan L.; Javaid N.; Bouk S.H.; Aldegheishem A.; Alrajeh N.Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization TechniqueIET Renewable Power Generation, 19, 1 (2025)
22880 View0.917Pamir; Javaid N.; Akbar M.; Aldegheishem A.; Alrajeh N.; Mohammed E.A.Employing A Machine Learning Boosting Classifiers Based Stacking Ensemble Model For Detecting Non Technical Losses In Smart GridsIEEE Access, 10 (2022)
50975 View0.917Gunduz M.Z.; Das R.Smart Grid Security: An Effective Hybrid Cnn-Based Approach For Detecting Energy Theft Using Consumption PatternsSensors, 24, 4 (2024)
2991 View0.91Aslam Z.; Javaid N.; Javed M.U.; Aslam M.; Aldegheishem A.; Alrajeh N.A New Clustering-Based Semi-Supervised Method To Restrict The Users From Anomalous Electricity Consumption: Supporting UrbanizationElectrical Engineering, 106, 5 (2024)
23974 View0.905Sowmya C.S.; Vibin R.; Mannam P.; Mounika L.; Kabat S.R.; Patra J.P.Enhancing Smart Grid Security: Detecting Electricity Theft Through Ensemble Deep LearningProceedings of the 8th International Conference on Communication and Electronics Systems, ICCES 2023 (2023)
23957 View0.901Hashim M.; Khan L.; Javaid N.; Ullah Z.; Shaheen I.Enhancing Smart City Functions Through The Mitigation Of Electricity Theft In Smart Grids: A Stacked Ensemble MethodInternational Transactions on Electrical Energy Systems, 2024 (2024)
25413 View0.898Ali A.; Khan L.; Javaid N.; Aslam M.; Aldegheishem A.; Alrajeh N.Exploiting Machine Learning To Tackle Peculiar Consumption Of Electricity In Power Grids: A Step Towards Building Green Smart CitiesIET Generation, Transmission and Distribution, 18, 3 (2024)
19207 View0.895Kabir B.; Qasim U.; Javaid N.; Aldegheishem A.; Alrajeh N.; Mohammed E.A.Detecting Nontechnical Losses In Smart Meters Using A Mlp-Gru Deep Model And Augmenting Data Via Theft AttacksSustainability (Switzerland), 14, 22 (2022)
17767 View0.891Alshehri A.; Badr M.M.; Baza M.; Alshahrani H.Deep Anomaly Detection Framework Utilizing Federated Learning For Electricity Theft Zero-Day CyberattacksSensors, 24, 10 (2024)