Smart City Gnosys

Smart city article details

Title Smart Grid Security: An Effective Hybrid Cnn-Based Approach For Detecting Energy Theft Using Consumption Patterns
ID_Doc 50975
Authors Gunduz M.Z.; Das R.
Year 2024
Published Sensors, 24, 4
DOI http://dx.doi.org/10.3390/s24041148
Abstract In Internet of Things-based smart grids, smart meters record and report a massive number of power consumption data at certain intervals to the data center of the utility for load monitoring and energy management. Energy theft is a big problem for smart meters and causes non-technical losses. Energy theft attacks can be launched by malicious consumers by compromising the smart meters to report manipulated consumption data for less billing. It is a global issue causing technical and financial damage to governments and operators. Deep learning-based techniques can effectively identify consumers involved in energy theft through power consumption data. In this study, a hybrid convolutional neural network (CNN)-based energy-theft-detection system is proposed to detect data-tampering cyber-attack vectors. CNN is a commonly employed method that automates the extraction of features and the classification process. We employed CNN for feature extraction and traditional machine learning algorithms for classification. In this work, honest data were obtained from a real dataset. Six attack vectors causing data tampering were utilized. Tampered data were synthetically generated through these attack vectors. Six separate datasets were created for each attack vector to design a specialized detector tailored for that specific attack. Additionally, a dataset containing all attack vectors was also generated for the purpose of designing a general detector. Furthermore, the imbalanced dataset problem was addressed through the application of the generative adversarial network (GAN) method. GAN was chosen due to its ability to generate new data closely resembling real data, and its application in this field has not been extensively explored. The data generated with GAN ensured better training for the hybrid CNN-based detector on honest and malicious consumption patterns. Finally, the results indicate that the proposed general detector could classify both honest and malicious users with satisfactory accuracy. © 2024 by the authors.
Author Keywords convolutional neural network; cyber security; deep learning; energy theft; generative adversarial network; Internet of Things; smart grid


Similar Articles


Id Similarity Authors Title Published
58117 View0.917Arif A.; Alghamdi T.A.; Khan Z.A.; Javaid N.Towards Efficient Energy Utilization Using Big Data Analytics In Smart Cities For Electricity Theft DetectionBig Data Research, 27 (2022)
23974 View0.915Sowmya C.S.; Vibin R.; Mannam P.; Mounika L.; Kabat S.R.; Patra J.P.Enhancing Smart Grid Security: Detecting Electricity Theft Through Ensemble Deep LearningProceedings of the 8th International Conference on Communication and Electronics Systems, ICCES 2023 (2023)
37138 View0.915Ali A.; Khan L.; Javaid N.; Bouk S.H.; Aldegheishem A.; Alrajeh N.Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization TechniqueIET Renewable Power Generation, 19, 1 (2025)
19207 View0.91Kabir B.; Qasim U.; Javaid N.; Aldegheishem A.; Alrajeh N.; Mohammed E.A.Detecting Nontechnical Losses In Smart Meters Using A Mlp-Gru Deep Model And Augmenting Data Via Theft AttacksSustainability (Switzerland), 14, 22 (2022)
8606 View0.909Quasim M.T.; Nisa K.; Khan M.Z.; Husain M.S.; Alam S.; Shuaib M.; Meraj M.; Abdullah M.An Internet Of Things Enabled Machine Learning Model For Energy Theft Prevention System (Etps) In Smart CitiesJournal of Cloud Computing, 12, 1 (2023)
2991 View0.907Aslam Z.; Javaid N.; Javed M.U.; Aslam M.; Aldegheishem A.; Alrajeh N.A New Clustering-Based Semi-Supervised Method To Restrict The Users From Anomalous Electricity Consumption: Supporting UrbanizationElectrical Engineering, 106, 5 (2024)
8003 View0.898Xie R.An Energy Theft Detection Framework With Privacy Protection For Smart GridProceedings of the International Joint Conference on Neural Networks, 2023-June (2023)
22880 View0.898Pamir; Javaid N.; Akbar M.; Aldegheishem A.; Alrajeh N.; Mohammed E.A.Employing A Machine Learning Boosting Classifiers Based Stacking Ensemble Model For Detecting Non Technical Losses In Smart GridsIEEE Access, 10 (2022)
17767 View0.897Alshehri A.; Badr M.M.; Baza M.; Alshahrani H.Deep Anomaly Detection Framework Utilizing Federated Learning For Electricity Theft Zero-Day CyberattacksSensors, 24, 10 (2024)
23955 View0.896Rao S.P.C.; Swarnam S.; Kumar N.; Sheikameer Batcha S.; Sivalanka V.; Chakravarthi A.V.D.Enhancing Smart City Efficiency By Mitigating Electricity Theft In Smart Grids Using Lightweight Dnn And Smo3rd International Conference on Integrated Circuits and Communication Systems, ICICACS 2025 (2025)