8606  | 0.911 | Quasim M.T.; Nisa K.; Khan M.Z.; Husain M.S.; Alam S.; Shuaib M.; Meraj M.; Abdullah M. | An Internet Of Things Enabled Machine Learning Model For Energy Theft Prevention System (Etps) In Smart Cities | Journal of Cloud Computing, 12, 1 (2023) |
50975  | 0.91 | Gunduz M.Z.; Das R. | Smart Grid Security: An Effective Hybrid Cnn-Based Approach For Detecting Energy Theft Using Consumption Patterns | Sensors, 24, 4 (2024) |
37138  | 0.908 | Ali A.; Khan L.; Javaid N.; Bouk S.H.; Aldegheishem A.; Alrajeh N. | Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization Technique | IET Renewable Power Generation, 19, 1 (2025) |
3567  | 0.899 | Badawi S.A.; Takruri M.; Al-Bashayreh M.G.; Salameh K.; Humam J.; Assaf S.; Aziz M.R.; Albadawi A.; Guessoum D.; ElBadawi I.; Al-Hattab M. | A Novel Two-Stage Method To Detect Non-Technical Losses In Smart Grids | IET Smart Cities, 6, 2 (2024) |
58117  | 0.895 | Arif A.; Alghamdi T.A.; Khan Z.A.; Javaid N. | Towards Efficient Energy Utilization Using Big Data Analytics In Smart Cities For Electricity Theft Detection | Big Data Research, 27 (2022) |
22880  | 0.893 | Pamir; Javaid N.; Akbar M.; Aldegheishem A.; Alrajeh N.; Mohammed E.A. | Employing A Machine Learning Boosting Classifiers Based Stacking Ensemble Model For Detecting Non Technical Losses In Smart Grids | IEEE Access, 10 (2022) |
23974  | 0.889 | Sowmya C.S.; Vibin R.; Mannam P.; Mounika L.; Kabat S.R.; Patra J.P. | Enhancing Smart Grid Security: Detecting Electricity Theft Through Ensemble Deep Learning | Proceedings of the 8th International Conference on Communication and Electronics Systems, ICCES 2023 (2023) |
8616  | 0.884 | Nandhini N.; Manikandan V.; Elango S. | An Interpretable Generalized Additive Neural Networks For Electricity Theft Detection In Smart Cities Using Balanced Data And Intelligent Grid Management | Energy and Buildings, 346 (2025) |
2991  | 0.884 | Aslam Z.; Javaid N.; Javed M.U.; Aslam M.; Aldegheishem A.; Alrajeh N. | A New Clustering-Based Semi-Supervised Method To Restrict The Users From Anomalous Electricity Consumption: Supporting Urbanization | Electrical Engineering, 106, 5 (2024) |
17767  | 0.882 | Alshehri A.; Badr M.M.; Baza M.; Alshahrani H. | Deep Anomaly Detection Framework Utilizing Federated Learning For Electricity Theft Zero-Day Cyberattacks | Sensors, 24, 10 (2024) |