23957  | 0.932 | Hashim M.; Khan L.; Javaid N.; Ullah Z.; Shaheen I. | Enhancing Smart City Functions Through The Mitigation Of Electricity Theft In Smart Grids: A Stacked Ensemble Method | International Transactions on Electrical Energy Systems, 2024 (2024) |
22880  | 0.926 | Pamir; Javaid N.; Akbar M.; Aldegheishem A.; Alrajeh N.; Mohammed E.A. | Employing A Machine Learning Boosting Classifiers Based Stacking Ensemble Model For Detecting Non Technical Losses In Smart Grids | IEEE Access, 10 (2022) |
25413  | 0.924 | Ali A.; Khan L.; Javaid N.; Aslam M.; Aldegheishem A.; Alrajeh N. | Exploiting Machine Learning To Tackle Peculiar Consumption Of Electricity In Power Grids: A Step Towards Building Green Smart Cities | IET Generation, Transmission and Distribution, 18, 3 (2024) |
58117  | 0.919 | Arif A.; Alghamdi T.A.; Khan Z.A.; Javaid N. | Towards Efficient Energy Utilization Using Big Data Analytics In Smart Cities For Electricity Theft Detection | Big Data Research, 27 (2022) |
3567  | 0.917 | Badawi S.A.; Takruri M.; Al-Bashayreh M.G.; Salameh K.; Humam J.; Assaf S.; Aziz M.R.; Albadawi A.; Guessoum D.; ElBadawi I.; Al-Hattab M. | A Novel Two-Stage Method To Detect Non-Technical Losses In Smart Grids | IET Smart Cities, 6, 2 (2024) |
50975  | 0.915 | Gunduz M.Z.; Das R. | Smart Grid Security: An Effective Hybrid Cnn-Based Approach For Detecting Energy Theft Using Consumption Patterns | Sensors, 24, 4 (2024) |
19207  | 0.908 | Kabir B.; Qasim U.; Javaid N.; Aldegheishem A.; Alrajeh N.; Mohammed E.A. | Detecting Nontechnical Losses In Smart Meters Using A Mlp-Gru Deep Model And Augmenting Data Via Theft Attacks | Sustainability (Switzerland), 14, 22 (2022) |
2991  | 0.908 | Aslam Z.; Javaid N.; Javed M.U.; Aslam M.; Aldegheishem A.; Alrajeh N. | A New Clustering-Based Semi-Supervised Method To Restrict The Users From Anomalous Electricity Consumption: Supporting Urbanization | Electrical Engineering, 106, 5 (2024) |
8616  | 0.903 | Nandhini N.; Manikandan V.; Elango S. | An Interpretable Generalized Additive Neural Networks For Electricity Theft Detection In Smart Cities Using Balanced Data And Intelligent Grid Management | Energy and Buildings, 346 (2025) |
17767  | 0.897 | Alshehri A.; Badr M.M.; Baza M.; Alshahrani H. | Deep Anomaly Detection Framework Utilizing Federated Learning For Electricity Theft Zero-Day Cyberattacks | Sensors, 24, 10 (2024) |