Smart City Gnosys

Smart city article details

Title Task Offloading And Resource Allocation In Iot Based Mobile Edge Computing Using Deep Learning
ID_Doc 54431
Authors Abdullaev I.; Prodanova N.; Bhaskar K.A.; Lydia E.L.; Kadry S.; Kim J.
Year 2023
Published Computers, Materials and Continua, 76, 2
DOI http://dx.doi.org/10.32604/cmc.2023.038417
Abstract Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which everyMDhasM independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967. © 2023 Tech Science Press. All rights reserved.
Author Keywords deep belief network; Mobile edge computing; parameter tuning; resource management; seagull optimization


Similar Articles


Id Similarity Authors Title Published
34433 View0.892Yao R.; Liu L.; Zuo X.; Yu L.; Xu J.; Fan Y.; Li W.Joint Task Offloading And Power Control Optimization For Iot-Enabled Smart Cities: An Energy-Efficient Coordination Via Deep Reinforcement LearningIEEE Transactions on Consumer Electronics (2025)
1511 View0.89Gali M.; Mahamkali A.A Distributed Deep Meta Learning Based Task Offloading Framework For Smart City Internet Of Things With Edge-Cloud ComputingJournal of Internet Services and Information Security, 12, 4 (2022)
7415 View0.887Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of ThingsSustainable Computing: Informatics and Systems, 43 (2024)
21063 View0.885He B.; Li H.; Chen T.Drl-Based Computing Offloading Approach For Large-Scale Heterogeneous Tasks In Mobile Edge ComputingConcurrency and Computation: Practice and Experience, 36, 19 (2024)
54442 View0.884Zhao X.; Liu M.; Li M.Task Offloading Strategy And Scheduling Optimization For Internet Of Vehicles Based On Deep Reinforcement LearningAd Hoc Networks, 147 (2023)
21789 View0.882Tian K.; Chai H.; Liu Y.; Liu B.Edge Intelligence Empowered Dynamic Offloading And Resource Management Of Mec For Smart City Internet Of ThingsElectronics (Switzerland), 11, 6 (2022)
20723 View0.881Samarneh A.A.; Alma'aitah A.Y.Distributed Task Offloading In Mobile Edge Computing Using Metaheuristics2024 6th International Conference on Communications, Signal Processing, and their Applications, ICCSPA 2024 (2024)
21374 View0.88Wan X.Dynamic Resource Management In Mec Powered By Edge Intelligence For Smart City Internet Of ThingsJournal of Grid Computing, 22, 1 (2024)
37381 View0.878Huang H.; Zhan W.; Min G.; Duan Z.; Peng K.Mobility-Aware Computation Offloading With Load Balancing In Smart City Networks Using Mec FederationIEEE Transactions on Mobile Computing, 23, 11 (2024)
18069 View0.877Li W.; Chen X.; Jiao L.; Wang Y.Deep Reinforcement Learning-Based Intelligent Task Offloading And Dynamic Resource Allocation In 6G Smart CityProceedings - IEEE Symposium on Computers and Communications, 2023-July (2023)