Smart City Gnosys

Smart city article details

Title Task Offloading Strategy And Scheduling Optimization For Internet Of Vehicles Based On Deep Reinforcement Learning
ID_Doc 54442
Authors Zhao X.; Liu M.; Li M.
Year 2023
Published Ad Hoc Networks, 147
DOI http://dx.doi.org/10.1016/j.adhoc.2023.103193
Abstract Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment. © 2023
Author Keywords Deep reinforcement learning; Internet of vehicles; Mobile edge computing; Scheduling optimization


Similar Articles


Id Similarity Authors Title Published
18051 View0.934Agbaje P.; Nwafor E.; Olufowobi H.Deep Reinforcement Learning For Energy-Efficient Task Offloading In Cooperative Vehicular Edge NetworksIEEE International Conference on Industrial Informatics (INDIN), 2023-July (2023)
1212 View0.93Liu P.; Peng K.; Zhao B.A Cybertwin-Driven Intelligent Offloading Method For Iov Applications Using Drl In Smart CitiesProceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022 (2022)
34433 View0.916Yao R.; Liu L.; Zuo X.; Yu L.; Xu J.; Fan Y.; Li W.Joint Task Offloading And Power Control Optimization For Iot-Enabled Smart Cities: An Energy-Efficient Coordination Via Deep Reinforcement LearningIEEE Transactions on Consumer Electronics (2025)
32466 View0.916Wu Y.; Fang X.; Min G.; Chen H.; Luo C.Intelligent Offloading Balance For Vehicular Edge Computing And NetworksIEEE Transactions on Intelligent Transportation Systems, 26, 5 (2025)
21789 View0.91Tian K.; Chai H.; Liu Y.; Liu B.Edge Intelligence Empowered Dynamic Offloading And Resource Management Of Mec For Smart City Internet Of ThingsElectronics (Switzerland), 11, 6 (2022)
54441 View0.909Zeng J.; Gou F.; Wu J.Task Offloading Scheme Combining Deep Reinforcement Learning And Convolutional Neural Networks For Vehicle Trajectory Prediction In Smart CitiesComputer Communications, 208 (2023)
26323 View0.908Chen X.; Liu G.Federated Deep Reinforcement Learning-Based Task Offloading And Resource Allocation For Smart Cities In A Mobile Edge NetworkSensors, 22, 13 (2022)
38090 View0.904Jiao T.; Feng X.; Guo C.; Wang D.; Song J.Multi-Agent Deep Reinforcement Learning For Efficient Computation Offloading In Mobile Edge ComputingComputers, Materials and Continua, 76, 3 (2023)
17056 View0.901Zhang X.; Xing H.; Zang W.; Jin Z.; Shen Y.Cybertwin-Driven Multi-Intelligent Reflecting Surfaces Aided Vehicular Edge Computing Leveraged By Deep Reinforcement LearningIEEE Vehicular Technology Conference, 2022-September (2022)
40621 View0.899Hassan M.T.; Hosain M.K.Optimization Of Computation Offloading In Mobile-Edge Computing Networks With Deep Reinforcement Approach2024 IEEE International Conference on Communication, Computing and Signal Processing, IICCCS 2024 (2024)