Smart City Gnosys

Smart city article details

Title Region Profile Enhanced Urban Spatio-Temporal Prediction Via Adaptive Meta-Learning
ID_Doc 44815
Authors Chen J.; Liu T.; Li R.
Year 2023
Published International Conference on Information and Knowledge Management, Proceedings
DOI http://dx.doi.org/10.1145/3583780.3615027
Abstract Urban spatio-temporal (ST) prediction plays a crucial role in smart city construction. Due to the high cost of ST data collection, improving ST prediction in a lack of data is significant. For this purpose, existing meta-learning methods have been demonstrated powerful by learning an initial network from training tasks and adjusting to target tasks with limited data. However, such shared knowledge from a set of tasks may contain irrelevant noise due to the gap of region-varying ST dynamics, resulting in the negative transfer issue. As a revelation of regional functional patterns, region profiles give rise to the diversity of ST dynamics. Thus, we design a novel adaptive meta-optimized model MetaRSTP, which conducts the initial prediction model in a finer-granularity of region level with region profiles as semantic evidence. To enhance the expressiveness of profiles, we firstly build a semantic alignment space to explore the inter-view co-semantics. Fusing it with view-specific uniqueness, the multi-view region profiles can be better applied in urban tasks. Then, a regional bias generator derives non-shared parameters in terms of profiles, which alleviates the divergence among regions. We set a new meta-learning strategy as initialize the network with fixed generalizable parameters and region-adaptive bias, thus enhancing the personalized prediction performance even in few-shot scenarios. Extensive experiments on real-world datasets illustrate the effectiveness of our MetaRSTP and our learned region profiles. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0124-5/23/10...$15.00.
Author Keywords Deep learning; Meta-learning; Urban spatio-temporal prediction


Similar Articles


Id Similarity Authors Title Published
34890 View0.913Yao H.; Liu Y.; Wei Y.; Tang X.; Li Z.Learning From Multiple Cities: A Meta-Learning Approach For Spatial-Temporal PredictionThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (2019)
60280 View0.897Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
46173 View0.891Ma Q.; Zhang Z.; Zhao X.; Li H.; Zhao H.; Wang Y.; Liu Z.; Wang W.Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic ForecastingInternational Conference on Information and Knowledge Management, Proceedings (2023)
52833 View0.877Zhao L.; Gao M.; Wang Z.St-Gsp: Spatial-Temporal Global Semantic Representation Learning For Urban Flow PredictionWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining (2022)
53039 View0.875Hong Y.; Chen L.; Wang L.; Xie X.; Luo G.; Wang C.; Chen L.Stkopt: Automated Spatio-Temporal Knowledge Optimization For Traffic PredictionWWW 2025 - Proceedings of the ACM Web Conference (2025)
43449 View0.874Zhang Z.; Zhao X.; Liu Q.; Zhang C.; Ma Q.; Wang W.; Zhao H.; Wang Y.; Liu Z.Promptst: Prompt-Enhanced Spatio-Temporal Multi-Attribute PredictionInternational Conference on Information and Knowledge Management, Proceedings (2023)
28948 View0.872Zhou S.; He D.; Chen L.; Shang S.; Han P.Heterogeneous Region Embedding With Prompt LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
25830 View0.872Liu C.; Zhang H.; Zhu G.; Guan H.; Kwong S.Exploring Trajectory Embedding Via Spatial-Temporal Propagation For Dynamic Region RepresentationsInformation Sciences, 668 (2024)
11538 View0.871Zhang Z.; Zhao X.; Miao H.; Zhang C.; Zhao H.; Zhang J.Autostl: Automated Spatio-Temporal Multi-Task LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
26541 View0.87Liang Y.; Ouyang K.; Sun J.; Wang Y.; Zhang J.; Zheng Y.; Rosenblum D.; Zimmermann R.Fine-Grained Urban Flow PredictionThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (2021)