Smart City Gnosys

Smart city article details

Title Exploring Trajectory Embedding Via Spatial-Temporal Propagation For Dynamic Region Representations
ID_Doc 25830
Authors Liu C.; Zhang H.; Zhu G.; Guan H.; Kwong S.
Year 2024
Published Information Sciences, 668
DOI http://dx.doi.org/10.1016/j.ins.2024.120516
Abstract In smart cities, the development of urban regions stands as a fundamental pillar in the planning process, significantly influencing the overall urban living experience. Effective representations of regions are essential for providing fundamental insights and enabling various applications in urban computing. While research on regional embeddings, especially in dynamic urban representations, has gained considerable attention, there is often a lack of in-depth investigation into the reciprocal impact of mobility trajectories and spatiotemporal interactions. To address this challenge, we present a novel Spatial-Temporal Dynamic Representation framework for urban regions (STDR) to uncover the dynamic functions and variation patterns. Our model leverages interaction information between human mobility and regional features based on motion trajectories, enabling time and geographic encoding for each region. It then combines temporal propagation and spatial proximity to aggregate dynamic function representations. Moreover, it implements a spatiotemporal gating mechanism addressing the imbalance issue in global spatiotemporal transmission. Compared with state-of-the-art research methods, our method can achieve more accurate performance in two downstream tasks. © 2024 Elsevier Inc.
Author Keywords Region representation; Spatial-temporal trajectory; Trajectory embedding; Urban computing


Similar Articles


Id Similarity Authors Title Published
39208 View0.901Li P.; Wang Z.; Zhang X.; Wang P.; Liu K.Next Arrival And Destination Prediction Via Spatiotemporal Embedding With Urban Geography And Human Mobility DataMathematics, 13, 5 (2025)
25909 View0.901Liu C.; Zhang H.; Guan H.; Zhang J.Extracting Region Function Representations Through Compressed Trajectory EmbeddingsData Compression Conference Proceedings (2024)
27802 View0.9Xu Y.; Deng Z.; Zhu T.; Han L.; Sun L.; Chen Z.; Sheng H.Generating Evolving Region Embedding With Memory-Based Graph For Dynamic Urban SensingInformation Fusion, 124 (2025)
20530 View0.894Cao J.; Wang X.; Chen G.; Tu W.; Shen X.; Zhao T.; Chen J.; Li Q.Disentangling The Hourly Dynamics Of Mixed Urban Function: A Multimodal Fusion Perspective Using Dynamic GraphsInformation Fusion, 117 (2025)
29091 View0.877Lv Y.; Yang J.; Xu J.; Guan X.; Zhang J.High-Dimensional Urban Dynamic Patterns Perception Under The Perspective Of Human Activity Semantics And Spatiotemporal CouplingSustainable Cities and Society, 121 (2025)
44815 View0.872Chen J.; Liu T.; Li R.Region Profile Enhanced Urban Spatio-Temporal Prediction Via Adaptive Meta-LearningInternational Conference on Information and Knowledge Management, Proceedings (2023)
28948 View0.869Zhou S.; He D.; Chen L.; Shang S.; Han P.Heterogeneous Region Embedding With Prompt LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
52831 View0.867Wang B.; Yu J.; Han J.; Qiu S.St-Difftraj: A Spatiotemporal-Aware Diffusion Model For Trajectory GenerationACAI 2024 - 2024 7th International Conference on Algorithms, Computing and Artificial Intelligence (2024)
20485 View0.864Liu C.; Yang Y.; Yao Z.; Xu Y.; Chen W.; Yue L.; Wu H.Discovering Urban Functions Of High-Definition Zoning With Continuous Human TracesInternational Conference on Information and Knowledge Management, Proceedings (2021)
25526 View0.863Liu J.; Yuan Y.Exploring Dynamic Urban Mobility Patterns From Traffic Flow Data Using Community DetectionAnnals of GIS, 30, 4 (2024)