Smart City Gnosys

Smart city article details

Title Promptst: Prompt-Enhanced Spatio-Temporal Multi-Attribute Prediction
ID_Doc 43449
Authors Zhang Z.; Zhao X.; Liu Q.; Zhang C.; Ma Q.; Wang W.; Zhao H.; Wang Y.; Liu Z.
Year 2023
Published International Conference on Information and Knowledge Management, Proceedings
DOI http://dx.doi.org/10.1145/3583780.3615016
Abstract In the era of information explosion, spatio-temporal data mining serves as a critical part of urban management. Considering the various fields demanding attention, e.g., traffic state, human activity, and social event, predicting multiple spatio-temporal attributes simultaneously can alleviate regulatory pressure and foster smart city construction. However, current research can not handle the spatio-temporal multi-attribute prediction well due to the complex relationships between diverse attributes. The key challenge lies in how to address the common spatio-temporal patterns while tackling their distinctions. In this paper, we propose an effective solution for spatio-temporal multi-attribute prediction, PromptST. We devise a spatio-temporal transformer and a parameter-sharing training scheme to address the common knowledge among different spatiotemporal attributes. Then, we elaborate a spatio-temporal prompt tuning strategy to fit the specific attributes in a lightweight manner. Through the pretrain and prompt tuning phases, our PromptST is able to enhance the specific spatio-temoral characteristic capture by prompting the backbone model to fit the specific target attribute while maintaining the learned common knowledge. Extensive experiments on real-world datasets verify that our PromptST attains state-of-the-art performance. Furthermore, we also prove PromptST owns good transferability on unseen spatio-temporal attributes, which brings promising application potential in urban computing. The implementation code is available to ease reproducibility. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0124-5/23/10...$15.00.
Author Keywords multi-attribute prediction; prompt learning; smart city; spatio-temporal prediction


Similar Articles


Id Similarity Authors Title Published
60280 View0.898Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
11538 View0.892Zhang Z.; Zhao X.; Miao H.; Zhang C.; Zhao H.; Zhang J.Autostl: Automated Spatio-Temporal Multi-Task LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
11537 View0.885Li T.; Zhang J.; Bao K.; Liang Y.; Li Y.; Zheng Y.Autost: Efficient Neural Architecture Search For Spatio-Temporal PredictionProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
52567 View0.876Jin G.; Liang Y.; Fang Y.; Shao Z.; Huang J.; Zhang J.; Zheng Y.Spatio-Temporal Graph Neural Networks For Predictive Learning In Urban Computing: A SurveyIEEE Transactions on Knowledge and Data Engineering, 36, 10 (2024)
52605 View0.874Jiang M.; Han Q.; Zhang H.; Liu H.Spatiotemporal Data Prediction Model Based On A Multi-Layer Attention MechanismInternational Journal of Data Warehousing and Mining, 19, 2 (2022)
44815 View0.874Chen J.; Liu T.; Li R.Region Profile Enhanced Urban Spatio-Temporal Prediction Via Adaptive Meta-LearningInternational Conference on Information and Knowledge Management, Proceedings (2023)
47493 View0.874Yang S.; Wu Q.Sdsinet: A Spatiotemporal Dual-Scale Interaction Network For Traffic PredictionApplied Soft Computing, 173 (2025)
52537 View0.871Bermudez-Edo, M; Barnaghi, PSpatio-Temporal Analysis For Smart City DataCOMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018) (2018)
34890 View0.869Yao H.; Liu Y.; Wei Y.; Tang X.; Li Z.Learning From Multiple Cities: A Meta-Learning Approach For Spatial-Temporal PredictionThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (2019)
53039 View0.869Hong Y.; Chen L.; Wang L.; Xie X.; Luo G.; Wang C.; Chen L.Stkopt: Automated Spatio-Temporal Knowledge Optimization For Traffic PredictionWWW 2025 - Proceedings of the ACM Web Conference (2025)