Smart City Gnosys

Smart city article details

Title Spatiotemporal Data Prediction Model Based On A Multi-Layer Attention Mechanism
ID_Doc 52605
Authors Jiang M.; Han Q.; Zhang H.; Liu H.
Year 2022
Published International Journal of Data Warehousing and Mining, 19, 2
DOI http://dx.doi.org/10.4018/IJDWM.315822
Abstract Spatiotemporal data prediction is of great significance in the fields of smart cities and smart manufacturing. Current spatiotemporal data prediction models heavily rely on traditional spatial views or single temporal granularity, which suffer from missing knowledge, including dynamic spatial correlations, periodicity, and mutability. This paper addresses these challenges by proposing a multilayer attention-based predictive model. The key idea of this paper is to use a multi-layer attention mechanism to model the dynamic spatial correlation of different features. Then, multi-granularity historical features are fused to predict future spatiotemporal data. Experiments on real-world data show that the proposed model outperforms six state-of-the-art benchmark methods. © 2022 IGI Global. All rights reserved.
Author Keywords Attention Mechanism; Data Mining; Dynamic Spatial Relationships; Encoder-Decoder; LSTM; Multiple Temporal Relationships; Smart Cities; Spatiotemporal Data Prediction


Similar Articles


Id Similarity Authors Title Published
53042 View0.881Jin Z.; Xu J.; Huang R.; Shao W.; Xiao X.Stm2Cn: A Multi-Graph Attention-Based Framework For Sensor Data Prediction In Smart CitiesProceedings of the International Joint Conference on Neural Networks, 2022-July (2022)
43449 View0.874Zhang Z.; Zhao X.; Liu Q.; Zhang C.; Ma Q.; Wang W.; Zhao H.; Wang Y.; Liu Z.Promptst: Prompt-Enhanced Spatio-Temporal Multi-Attribute PredictionInternational Conference on Information and Knowledge Management, Proceedings (2023)
17754 View0.864Hu J.; Liang Y.; Fan Z.; Liu L.; Yin Y.; Zimmermann R.Decoupling Long- And Short-Term Patterns In Spatiotemporal InferenceIEEE Transactions on Neural Networks and Learning Systems, 35, 11 (2024)
19926 View0.862Yin X.; Wu L.; Zhang Y.; Han Y.; Zhai K.Diffusion Convolution Graph Attention Network For Spatial-Temporal PredictionLecture Notes in Electrical Engineering, 996 LNEE (2023)
52516 View0.859Dao M.-S.; Zetsu K.; Hoang D.-T.Spatial-Temporal Graph Transformer Network For Spatial-Temporal ForecastingProceedings - 2024 IEEE International Conference on Big Data, BigData 2024 (2024)
58654 View0.856Chen J.; Wang L.; Wang W.; Song R.Traffic Prediction Model Based On Spatio-Temporal Graph Attention Network2022 4th International Conference on Control and Robotics, ICCR 2022 (2022)
6155 View0.852Jin X.-B.; Ma H.; Xie J.-Y.; Kong J.; Deveci M.; Kadry S.Ada-Stgmat: An Adaptive Spatio-Temporal Graph Multi-Attention Network For Intelligent Time Series Forecasting In Smart CitiesExpert Systems with Applications, 269 (2025)