Smart City Gnosys

Smart city article details

Title Sdsinet: A Spatiotemporal Dual-Scale Interaction Network For Traffic Prediction
ID_Doc 47493
Authors Yang S.; Wu Q.
Year 2025
Published Applied Soft Computing, 173
DOI http://dx.doi.org/10.1016/j.asoc.2025.112892
Abstract Accurate traffic forecasting is essential for smart city development. However, existing spatiotemporal modeling methods often face significant challenges, including limitations in handling complex temporal dependencies, capturing multiscale spatial relationships, and modeling the interaction between temporal and spatial features. These challenges arise due to the reliance on extended historical data, fixed adjacency matrices, and the lack of dynamic spatiotemporal interaction modeling. To address these issues, we propose the Spatiotemporal Dual-Scale Interaction Network (SDSINet). SDSINet introduces an implicit temporal information enhancement method that embeds temporal identity information into feature representations, reducing the computational overhead and improving the modeling of global temporal features. Additionally, SDSINet integrates a dynamic multiscale spatial modeling approach that combines adaptive and scale-specific graphs, enabling the model to capture both local and global spatial dependencies. Furthermore, SDSINet incorporates a dual-scale spatiotemporal interaction learning framework that captures short-term and long-term temporal dependencies as well as multiscale spatial correlations. Extensive experiments on real-world datasets – traffic flow (PeMS04), speed (PeMSD7(M)), and demand (NYCBike Drop-off/Pick-up) – demonstrate that SDSINet outperforms existing state-of-the-art methods in prediction accuracy and computational efficiency. Notably, SDSINet achieves a 14.03% reduction in MAE on the NYCBike Drop-off dataset compared to AFDGCN, setting a new benchmark for traffic forecasting. © 2025
Author Keywords Graph convolutional network; Interactive learning; Spatiotemporal dependencies; Traffic prediction


Similar Articles


Id Similarity Authors Title Published
21408 View0.914Zhang H.; Xie Q.; Shou Z.; Gao Y.Dynamic Spatial-Temporal Memory Augmentation Network For Traffic PredictionSensors, 24, 20 (2024)
20800 View0.91Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
36944 View0.909Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)
38047 View0.908Yang S.; Wu Q.; Wang Y.; Zhou Z.Mstdfgrn: A Multi-View Spatio-Temporal Dynamic Fusion Graph Recurrent Network For Traffic Flow PredictionComputers and Electrical Engineering, 123 (2025)
4883 View0.906Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
52517 View0.904Huang X.; Pan Z.; Zhao G.Spatial-Temporal Interactive Graph Convolutional Networks For Traffic Forecasting2024 4th International Conference on Electronic Information Engineering and Computer Technology, EIECT 2024 (2024)
46173 View0.903Ma Q.; Zhang Z.; Zhao X.; Li H.; Zhao H.; Wang Y.; Liu Z.; Wang W.Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic ForecastingInternational Conference on Information and Knowledge Management, Proceedings (2023)
52507 View0.902Liu S.; Zhu J.; Lei W.; Zhang P.Spatial-Temporal Attention Graph Wavenet For Traffic Forecasting2023 5th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2023 (2023)
38415 View0.901Zhao W.; Zhang S.; Zhou B.; Wang B.Multi-Spatio-Temporal Fusion Graph Recurrent Network For Traffic ForecastingEngineering Applications of Artificial Intelligence, 124 (2023)
40011 View0.901Luo G.; Zhang H.; Yuan Q.; Li J.; Wang W.; Wang F.-Y.One Size Fits All: A Unified Traffic Predictor For Capturing The Essential Spatial-Temporal DependencyIEEE Transactions on Neural Networks and Learning Systems, 35, 8 (2024)