Smart City Gnosys

Smart city article details

Title St-Difftraj: A Spatiotemporal-Aware Diffusion Model For Trajectory Generation
ID_Doc 52831
Authors Wang B.; Yu J.; Han J.; Qiu S.
Year 2024
Published ACAI 2024 - 2024 7th International Conference on Algorithms, Computing and Artificial Intelligence
DOI http://dx.doi.org/10.1109/ACAI63924.2024.10899629
Abstract Synthetic traj ectory generation has significant applications in urban planning, mobility analysis, smart city development, etc. Diffusion models excel at generating high-quality synthetic data and are widely used in traj ectory data generation. However, existing diffusion-based trajectory generation models face the following limitations: (1) ignoring temporal sequence information, and (2) inefficient use of conditional guidance. To address these issues, we propose a SpatioTemporal-Aware Diffusion Model for Trajectory Generation, named ST-DiffTraj. Specifically, we design a SpatioTemporal Encoder (STEncoder) to capture correlations between independent and joint spatiotemporal feature distributions by introducing temporal information. Additionally, we develop a noise estimation network by stacking multiple CDAttn-DConv (Condition-Dependent Attention Dilation Convolutional) layers. Each CDAttn-DConv layer integrates attention mechanisms and gated activation units to enhance noise estimation with conditional guidance. Comprehensive experiments on two real-world trajectory datasets demonstrate the superior performance of our model in generating high-quality trajectory data compared to baselines. © 2024 IEEE.
Author Keywords conditional guidance; diffusion model; trajectory generation


Similar Articles


Id Similarity Authors Title Published
25830 View0.867Liu C.; Zhang H.; Zhu G.; Guan H.; Kwong S.Exploring Trajectory Embedding Via Spatial-Temporal Propagation For Dynamic Region RepresentationsInformation Sciences, 668 (2024)
11043 View0.858He Q.; Xia D.; Li J.; Yang J.; Hu Y.; Li Y.; Li H.Attention-Based Spatiotemporal Adaptive Graph Diffusion Convolutional Network For Traffic Flow PredictionTransportation Research Record (2025)
39208 View0.853Li P.; Wang Z.; Zhang X.; Wang P.; Liu K.Next Arrival And Destination Prediction Via Spatiotemporal Embedding With Urban Geography And Human Mobility DataMathematics, 13, 5 (2025)
60280 View0.851Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
4883 View0.851Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
53014 View0.851Gong L.; Guo S.; Lin Y.; Liu Y.; Zheng E.; Shuang Y.; Lin Y.; Hu J.; Wan H.Stcdm: Spatio-Temporal Contrastive Diffusion Model For Check-In Sequence GenerationIEEE Transactions on Knowledge and Data Engineering, 37, 4 (2025)