Smart City Gnosys

Smart city article details

Title Generating Evolving Region Embedding With Memory-Based Graph For Dynamic Urban Sensing
ID_Doc 27802
Authors Xu Y.; Deng Z.; Zhu T.; Han L.; Sun L.; Chen Z.; Sheng H.
Year 2025
Published Information Fusion, 124
DOI http://dx.doi.org/10.1016/j.inffus.2025.103341
Abstract Recently, learning region embeddings from mobility data has become a prevalent solution to various smart city tasks. However, existing methods primarily focus on learning static embeddings, which often fail to capture temporal dynamics critical for tasks like travel time estimation and dynamic crime prediction. To fill the gap, this paper introduces an Evolving Urban Region Embedding method (EvolveURE), a generic and evolving region embedding framework tailored for dynamic urban sensing tasks. EvolveURE introduces a memory-based embedding module that continuously updates region embeddings by encoding time-aware region-region interactions and recursively updating region memories. Additionally, a time-aware mobility graph reconstruction task is designed to capture detailed temporal information by reconstructing both the magnitude and temporal density of mobility data. To enhance embedding stability and generalization, a cross-scale embedding reconstruction task is proposed, leveraging insights from different data scales and parameter updating mechanisms. The learned region embeddings are tested on diverse downstream urban sensing tasks. Experimental results demonstrate the proposed approach achieves superior results on dynamic urban sensing tasks thanks to these time-aware designs. Codes have been released on https://github.com/rabbityi1999/EvolveURE/. © 2025
Author Keywords Dynamic graph; Human mobility; Urban region embedding; Urban sensing


Similar Articles


Id Similarity Authors Title Published
25830 View0.9Liu C.; Zhang H.; Zhu G.; Guan H.; Kwong S.Exploring Trajectory Embedding Via Spatial-Temporal Propagation For Dynamic Region RepresentationsInformation Sciences, 668 (2024)
28948 View0.871Zhou S.; He D.; Chen L.; Shang S.; Han P.Heterogeneous Region Embedding With Prompt LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
2784 View0.867Jing Z.; Luo Y.; Li X.; Xu X.A Multi-Dimensional City Data Embedding Model For Improving Predictive Analytics And Urban OperationsIndustrial Management and Data Systems, 122, 10 (2022)
46173 View0.866Ma Q.; Zhang Z.; Zhao X.; Li H.; Zhao H.; Wang Y.; Liu Z.; Wang W.Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic ForecastingInternational Conference on Information and Knowledge Management, Proceedings (2023)
21408 View0.862Zhang H.; Xie Q.; Shou Z.; Gao Y.Dynamic Spatial-Temporal Memory Augmentation Network For Traffic PredictionSensors, 24, 20 (2024)
34890 View0.859Yao H.; Liu Y.; Wei Y.; Tang X.; Li Z.Learning From Multiple Cities: A Meta-Learning Approach For Spatial-Temporal PredictionThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (2019)
25909 View0.856Liu C.; Zhang H.; Guan H.; Zhang J.Extracting Region Function Representations Through Compressed Trajectory EmbeddingsData Compression Conference Proceedings (2024)
60280 View0.855Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
44815 View0.854Chen J.; Liu T.; Li R.Region Profile Enhanced Urban Spatio-Temporal Prediction Via Adaptive Meta-LearningInternational Conference on Information and Knowledge Management, Proceedings (2023)
39208 View0.853Li P.; Wang Z.; Zhang X.; Wang P.; Liu K.Next Arrival And Destination Prediction Via Spatiotemporal Embedding With Urban Geography And Human Mobility DataMathematics, 13, 5 (2025)