Smart City Gnosys

Smart city article details

Title Spatial-Temporal Contrasting For Fine-Grained Urban Flow Inference
ID_Doc 52510
Authors Xu X.; Wang Z.; Gao Q.; Zhong T.; Hui B.; Zhou F.; Trajcevski G.
Year 2023
Published IEEE Transactions on Big Data, 9, 6
DOI http://dx.doi.org/10.1109/TBDATA.2023.3316471
Abstract Fine-grained urban flow inference (FUFI) problem aims to infer the fine-grained flow maps from coarse-grained ones, benefiting various smart-city applications by reducing electricity, maintenance, and operation costs. Existing models use techniques from image super-resolution and achieve good performance in FUFI. However, they often rely on supervised learning with a large amount of training data, and often lack generalization capability and face overfitting. We present a new solution: Spatial-Temporal Contrasting for Fine-Grained Urban Flow Inference (STCF). It consists of (i) two pre-training networks for spatial-temporal contrasting between flow maps; and (ii) one coupled fine-tuning network for fusing learned features. By attracting spatial-temporally similar flow maps while distancing dissimilar ones within the representation space, STCF enhances efficiency and performance. Comprehensive experiments on two large-scale, real-world urban flow datasets reveal that STCF reduces inference error by up to 13.5%, requiring significantly fewer data and model parameters than prior arts. © 2023 IEEE.
Author Keywords Contrastive learning; traffic management; urban computing; urban flow inference


Similar Articles


Id Similarity Authors Title Published
26539 View0.945Yu H.; Xu X.; Zhong T.; Zhou F.Fine-Grained Urban Flow Inference Via Normalizing Flow (Student Abstract)Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, 36 (2022)
60301 View0.937Zhang D.; Chen L.; Zhang L.Urbanmc: Masking And Contrastive Self-Supervision For Fine-Grained Urban Flows InferenceACM International Conference Proceeding Series (2024)
26538 View0.914Ouyang K.; Liang Y.; Liu Y.; Tong Z.; Ruan S.; Zheng Y.; Rosenblum D.S.Fine-Grained Urban Flow InferenceIEEE Transactions on Knowledge and Data Engineering, 34, 6 (2022)
26540 View0.907Li J.; Wang S.; Zhang J.; Miao H.; Zhang J.; Yu P.S.Fine-Grained Urban Flow Inference With Incomplete DataIEEE Transactions on Knowledge and Data Engineering, 35, 6 (2023)
26541 View0.905Liang Y.; Ouyang K.; Sun J.; Wang Y.; Zhang J.; Zheng Y.; Rosenblum D.; Zimmermann R.Fine-Grained Urban Flow PredictionThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (2021)
19922 View0.899Zheng Y.; Zhong L.; Wang S.; Yang Y.; Gu W.; Zhang J.; Wang J.Diffuflow: Robust Fine-Grained Urban Flow Inference With Denoising Diffusion ModelInternational Conference on Information and Knowledge Management, Proceedings (2023)
6377 View0.884Zheng Y.; Wu J.; Cai Z.; Wang S.; Wang J.Adatm: Fine-Grained Urban Flow Inference With Adaptive Knowledge Transfer Across Multiple CitiesInternational Conference on Information and Knowledge Management, Proceedings (2024)
60279 View0.882Liang Y.; Ouyang K.; Jing L.; Ruan S.; Liu Y.; Zhang J.; Rosenblum D.S.; Zheng Y.Urbanfm: Inferring Fine-Grained Urban FlowsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
26432 View0.88Zheng Y.; Cai Y.; Cai Z.; Fan C.; Wang S.; Wang J.Fgitrans: Cross-City Transformer For Fine-Grained Urban Flow InferenceInternational Conference on Information and Knowledge Management, Proceedings (2024)
29131 View0.88Xu Z.; Kang Y.; Cao Y.High-Resolution Urban Flows Forecasting With Coarse-Grained Spatiotemporal DataIEEE Transactions on Artificial Intelligence, 4, 2 (2023)