Smart City Gnosys

Smart city article details

Title Fgitrans: Cross-City Transformer For Fine-Grained Urban Flow Inference
ID_Doc 26432
Authors Zheng Y.; Cai Y.; Cai Z.; Fan C.; Wang S.; Wang J.
Year 2024
Published International Conference on Information and Knowledge Management, Proceedings
DOI http://dx.doi.org/10.1145/3627673.3679855
Abstract Inferring the fine-grained urban flows based on the coarse-grained flow observations is practically important to many smart city-related applications. Adequate data is usually a prerequisite for existing machine learning methods, especially most deep learning models. However, many cities still suffer from the data scarcity issue due to the unbalanced city development levels. To mitigate this issue, we propose a novel cross-city fine-grained urban flow inference model named FGITrans, which aims to effectively transfer the knowledge from the data-rich cities to the data-scarce cities. Specifically, we design a weight-sharing triple-branch transformer framework which adopts self-attention and cross-attention for source/target city feature learning and domain alignment, respectively. Then, we propose a novel spatio-temporal adaptive embedding (STAE) layer for our transformer framework, and introduce a cross-city knowledge distillation (CKD) loss to narrow the cross-city disparities. The CKD loss explicitly enforces the framework to learn the discriminative domain-specific and domain-invariant representations simultaneously. Extensive experiments conducted on four large real-world datasets validate the effectiveness of FGITrans compared with the state-of-the-art baselines. © 2024 ACM.
Author Keywords spatial-temporal data mining; transfer learning; urban flow inference


Similar Articles


Id Similarity Authors Title Published
6377 View0.903Zheng Y.; Wu J.; Cai Z.; Wang S.; Wang J.Adatm: Fine-Grained Urban Flow Inference With Adaptive Knowledge Transfer Across Multiple CitiesInternational Conference on Information and Knowledge Management, Proceedings (2024)
26538 View0.896Ouyang K.; Liang Y.; Liu Y.; Tong Z.; Ruan S.; Zheng Y.; Rosenblum D.S.Fine-Grained Urban Flow InferenceIEEE Transactions on Knowledge and Data Engineering, 34, 6 (2022)
60279 View0.886Liang Y.; Ouyang K.; Jing L.; Ruan S.; Liu Y.; Zhang J.; Rosenblum D.S.; Zheng Y.Urbanfm: Inferring Fine-Grained Urban FlowsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
26541 View0.886Liang Y.; Ouyang K.; Sun J.; Wang Y.; Zhang J.; Zheng Y.; Rosenblum D.; Zimmermann R.Fine-Grained Urban Flow PredictionThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (2021)
52510 View0.88Xu X.; Wang Z.; Gao Q.; Zhong T.; Hui B.; Zhou F.; Trajcevski G.Spatial-Temporal Contrasting For Fine-Grained Urban Flow InferenceIEEE Transactions on Big Data, 9, 6 (2023)
60301 View0.877Zhang D.; Chen L.; Zhang L.Urbanmc: Masking And Contrastive Self-Supervision For Fine-Grained Urban Flows InferenceACM International Conference Proceeding Series (2024)
19922 View0.876Zheng Y.; Zhong L.; Wang S.; Yang Y.; Gu W.; Zhang J.; Wang J.Diffuflow: Robust Fine-Grained Urban Flow Inference With Denoising Diffusion ModelInternational Conference on Information and Knowledge Management, Proceedings (2023)
17869 View0.875Zou X.; Yan Y.; Hao X.; Hu Y.; Wen H.; Liu E.; Zhang J.; Li Y.; Li T.; Zheng Y.; Liang Y.Deep Learning For Cross-Domain Data Fusion In Urban Computing: Taxonomy, Advances, And OutlookInformation Fusion, 113 (2025)
29131 View0.874Xu Z.; Kang Y.; Cao Y.High-Resolution Urban Flows Forecasting With Coarse-Grained Spatiotemporal DataIEEE Transactions on Artificial Intelligence, 4, 2 (2023)
26540 View0.872Li J.; Wang S.; Zhang J.; Miao H.; Zhang J.; Yu P.S.Fine-Grained Urban Flow Inference With Incomplete DataIEEE Transactions on Knowledge and Data Engineering, 35, 6 (2023)