2187  | 0.864 | Gill K.S.; Dhillon A. | A Hybrid Machine Learning Framework For Intrusion Detection System In Smart Cities | Evolving Systems, 15, 6 (2024) |
30748  | 0.864 | Devi E. M R.; Almakayeel N.; Lydia E.L. | Improved Sand Cat Swarm Optimization With Deep Learning Based Enhanced Malicious Activity Recognition For Cybersecurity | Alexandria Engineering Journal, 98 (2024) |
28785  | 0.856 | Hijazi N.; Aloqaily M.; Ouni B.; Karray F.; Debbah M. | Harris Hawks Feature Selection In Distributed Machine Learning For Secure Iot Environments | IEEE International Conference on Communications, 2023-May (2023) |
6500  | 0.854 | Qasim Jebur Al-Zaidawi M.; Çevik M. | Advanced Deep Learning Models For Improved Iot Network Monitoring Using Hybrid Optimization And Mcdm Techniques | Symmetry, 17, 3 (2025) |
23834  | 0.853 | Al-Atawi A.A. | Enhancing Internet Of Smart City Security: Utilizing Logistic Boosted Algorithms For Anomaly Detection And Cyberattack Prevention | SN Computer Science, 5, 5 (2024) |
8070  | 0.853 | Indra G.; Nirmala E.; Nirmala G.; Senthilvel P.G. | An Ensemble Learning Approach For Intrusion Detection In Iot-Based Smart Cities | Peer-to-Peer Networking and Applications, 17, 6 (2024) |
13293  | 0.851 | Khan J.; Elfakharany R.; Saleem H.; Pathan M.; Shahzad E.; Dhou S.; Aloul F. | Can Machine Learning Enhance Intrusion Detection To Safeguard Smart City Networks From Multi-Step Cyberattacks? | Smart Cities, 8, 1 (2025) |