Smart City Gnosys

Smart city article details

Title Harris Hawks Feature Selection In Distributed Machine Learning For Secure Iot Environments
ID_Doc 28785
Authors Hijazi N.; Aloqaily M.; Ouni B.; Karray F.; Debbah M.
Year 2023
Published IEEE International Conference on Communications, 2023-May
DOI http://dx.doi.org/10.1109/ICC45041.2023.10279042
Abstract The development of the Internet of Things (IoT) has dramatically expanded our daily lives, playing a pivotal role in the enablement of smart cities, healthcare, and buildings. Emerging technologies, such as IoT, seek to improve the quality of service in cognitive cities. Although IoT applications are helpful in smart building applications, they present a real risk as the large number of interconnected devices in those buildings, using heterogeneous networks, increases the number of potential IoT attacks. IoT applications can collect and transfer sensitive data. Therefore, it is necessary to develop new methods to detect hacked IoT devices. This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks launched from compromised IoT devices. Distributed Machine Learning (DML) aims to train models locally on edge devices without sharing data to a central server. Therefore, we apply the proposed approach using centralized and distributed ML models. Both learning models are evaluated under two benchmark datasets for IoT botnet attacks and compared with other well-known classification techniques using different evaluation indicators. The experimental results show an improvement in terms of accuracy, precision, recall, and F-measure in most cases. The proposed method achieves an average F-measure up to 99.9%. The results show that the DML model achieves competitive performance against centralized ML while maintaining the data locally. © 2023 IEEE.
Author Keywords Cognitive Cities; Distributed Machine Learning; Harris Hawks Optimization; IoT; Smart Buildings


Similar Articles


Id Similarity Authors Title Published
35958 View0.901Lefoane M.; Ghafir I.; Kabir S.; Awan I.-U.Machine Learning For Botnet Detection: An Optimized Feature Selection ApproachACM International Conference Proceeding Series (2021)
33508 View0.89Saini K.S.; Chaudhary S.Investigation On Attack Detection In Iot Networks: A Study And Analysis Of The Existing Machine Learning And Deep Learning Techniques3rd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2025 (2025)
36064 View0.888Alfahaid A.; Alalwany E.; Almars A.M.; Alharbi F.; Atlam E.; Mahgoub I.Machine Learning-Based Security Solutions For Iot Networks: A Comprehensive SurveySensors, 25, 11 (2025)
2483 View0.88Nepolo E.; Ngxande M.; Zodi G.-A.L.A Machine Learning-Based Performance Analysis Of Feature Selection Methods For Anomaly Detection For Iot Network SecurityLearning and Analytics in Intelligent Systems, 43 (2025)
47782 View0.878Ahmed Y.; Beyioku K.; Yousefi M.Securing Smart Cities Through Machine Learning: A Honeypot-Driven Approach To Attack Detection In Internet Of Things EcosystemsIET Smart Cities, 6, 3 (2024)
975 View0.877Khan M.A.A.; Kaidi H.M.A Comprehensive Survey Of Machine Learning Techniques In Next-Generation Wireless Networks And The Internet Of ThingsIngenierie des Systemes d'Information, 28, 4 (2023)
34132 View0.877Ashraf, J; Keshk, M; Moustafa, N; Abdel-Basset, M; Khurshid, H; Bakhshi, AD; Mostafa, RRIotbot-Ids: A Novel Statistical Learning-Enabled Botnet Detection Framework For Protecting Networks Of Smart CitiesSUSTAINABLE CITIES AND SOCIETY, 72 (2021)
4601 View0.877Kumar P.J.; Neduncheliyan S.A Shark Inspired Ensemble Deep Learning Stacks For Ensuring The Security In Internet Of Things (Iot)-Based Smart City InfrastructureInternational Journal of Computational Intelligence Systems, 17, 1 (2024)
4273 View0.874Qureshi A.; Qureshi M.A.; Haider H.A.; Khawaja R.A Review On Machine Learning Techniques For Secure Iot NetworksProceedings - 2020 23rd IEEE International Multi-Topic Conference, INMIC 2020 (2020)
12772 View0.873Abu Al-Haija Q.; Al Badawi A.; Bojja G.R.Boost-Defence For Resilient Iot Networks: A Head-To-Toe ApproachExpert Systems, 39, 10 (2022)