Smart City Gnosys

Smart city article details

Title Advanced Deep Learning Models For Improved Iot Network Monitoring Using Hybrid Optimization And Mcdm Techniques
ID_Doc 6500
Authors Qasim Jebur Al-Zaidawi M.; Çevik M.
Year 2025
Published Symmetry, 17, 3
DOI http://dx.doi.org/10.3390/sym17030388
Abstract This study addresses the challenge of optimizing deep learning models for IoT network monitoring, focusing on achieving a symmetrical balance between scalability and computational efficiency, which is essential for real-time anomaly detection in dynamic networks. We propose two novel hybrid optimization methods—Hybrid Grey Wolf Optimization with Particle Swarm Optimization (HGWOPSO) and Hybrid World Cup Optimization with Harris Hawks Optimization (HWCOAHHO)—designed to symmetrically balance global exploration and local exploitation, thereby enhancing model training and adaptation in IoT environments. These methods leverage complementary search behaviors, where symmetry between global and local search processes enhances convergence speed and detection accuracy. The proposed approaches are validated using real-world IoT datasets, demonstrating significant improvements in anomaly detection accuracy, scalability, and adaptability compared to state-of-the-art techniques. Specifically, HGWOPSO combines the symmetrical hierarchy-driven leadership of Grey Wolves with the velocity updates of Particle Swarm Optimization, while HWCOAHHO synergizes the dynamic exploration strategies of Harris Hawks with the competition-driven optimization of the World Cup algorithm, ensuring balanced search and decision-making processes. Performance evaluation using benchmark functions and real-world IoT network data highlights superior accuracy, precision, recall, and F1 score compared to traditional methods. To further enhance decision-making, a Multi-Criteria Decision-Making (MCDM) framework incorporating the Analytic Hierarchy Process (AHP) and TOPSIS is employed to symmetrically evaluate and rank the proposed methods. Results indicate that HWCOAHHO achieves the most optimal balance between accuracy and precision, followed closely by HGWOPSO, while traditional methods like FFNNs and MLPs show lower effectiveness in real-time anomaly detection. The symmetry-driven approach of these hybrid algorithms ensures robust, adaptive, and scalable monitoring solutions for IoT networks characterized by dynamic traffic patterns and evolving anomalies, thus ensuring real-time network stability and data integrity. The findings have substantial implications for smart cities, industrial automation, and healthcare IoT applications, where symmetrical optimization between detection performance and computational efficiency is crucial for ensuring optimal and reliable network monitoring. This work lays the groundwork for further research on hybrid optimization techniques and deep learning, emphasizing the role of symmetry in enhancing the efficiency and resilience of IoT network monitoring systems. © 2025 by the authors.
Author Keywords deep learning models; HGWOPSO; HWCOAHHO; IoT network monitoring; MCDM


Similar Articles


Id Similarity Authors Title Published
975 View0.88Khan M.A.A.; Kaidi H.M.A Comprehensive Survey Of Machine Learning Techniques In Next-Generation Wireless Networks And The Internet Of ThingsIngenierie des Systemes d'Information, 28, 4 (2023)
2201 View0.877Nathiya N.; Rajan C.; Geetha K.A Hybrid Optimization And Machine Learning Based Energy-Efficient Clustering Algorithm With Self-Diagnosis Data Fault Detection And Prediction For Wsn-Iot ApplicationPeer-to-Peer Networking and Applications, 18, 2 (2025)
33326 View0.87Singh R.; Ujjwal R.L.Intrusion Detection And Prevention System For Smart Iot NetworkLecture Notes in Electrical Engineering, 1280 (2025)
2510 View0.867Florrence J.M.; Antoinette A.; Buvaneswari S.; Wanare A.L.; Vashistha A.; Mulpuri M.; Rambabu R.A Mathematical Model For Enhancing Cybersecurity In Iot Networks Using Lstm-Based Anomaly Detection And OptimizationCommunications on Applied Nonlinear Analysis, 32, 2 (2025)
7367 View0.867Albulayhi K.; Sheldon F.T.An Adaptive Deep-Ensemble Anomaly-Based Intrusion Detection System For The Internet Of Things2021 IEEE World AI IoT Congress, AIIoT 2021 (2021)
30690 View0.866Khayyat M.M.Improved Bacterial Foraging Optimization With Deep Learning Based Anomaly Detection In Smart CitiesAlexandria Engineering Journal, 75 (2023)
4601 View0.866Kumar P.J.; Neduncheliyan S.A Shark Inspired Ensemble Deep Learning Stacks For Ensuring The Security In Internet Of Things (Iot)-Based Smart City InfrastructureInternational Journal of Computational Intelligence Systems, 17, 1 (2024)
28785 View0.865Hijazi N.; Aloqaily M.; Ouni B.; Karray F.; Debbah M.Harris Hawks Feature Selection In Distributed Machine Learning For Secure Iot EnvironmentsIEEE International Conference on Communications, 2023-May (2023)
2052 View0.864Elsayed R.; Hamada R.; Hammoudeh M.; Abdalla M.; Elsaid S.A.A Hierarchical Deep Learning-Based Intrusion Detection Architecture For Clustered Internet Of ThingsJournal of Sensor and Actuator Networks, 12, 1 (2023)
3095 View0.863Rafrafi M.; Ghazel C.; Saidane L.A New Model For Enhancing Iot Security Through Hybrid Optimization Of Intrusion Detection2024 13th IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks, PEMWN 2024 (2024)