| Abstract |
From the past decade, Wireless sensor networks (WSNs) spread out significantly with the result of technological progress in hardware, software, and micro electro mechanical systems. With the enlargement of WSNs, great advances have been shaped in Internet-of-Things (IoT) by an ample variety of applications. IoT applications practiced in myriad phases include human life, ecological supervise, public wellbeing and medical behavior, smart shipping, traffic monitoring, smart cities, smart home applications, smart grid, and others. Mostly Internet of Things maintained with various sensing devices and technologies such as Sensors, GPS (Global positioning system), laser sensor, gas inductor, RFID (Radio-frequency identification devices), infrared sensor and many more, which collects large range features from the real world and send abstract feature objects which need to be monitored. Most of the devices are linked and interacted with more than one. The main idea behind IoT is to connect device-to-device, device-to-human, human-to-human. Development of IoT can make people live in a convenient way; however, it does not make sure the security of secret confidential information of its user. With a great collection of distribution, responsiveness and somewhat high processing capacity of IoT objects formed them as an optimal objective for cyber-attacks. So here some probabilities, secret confidential information may be a leak or stolen some point in time. Just once a sign of IoT device is captured or suspended it intention straightforwardly perturbs the security about whole information of IoT. Moreover, enormous IoT nodes accumulate a large amount of extensive prosperous, private information and process it, so its like lottery for cyber attackers to steal entire important data. Security obstacles like privacy, secure communication, access control, safe storage of data are becoming important tackles in the IoT domain. Hence, each solitary node that we positioned, each solitary device that we discover, each solitary byte that generated within the sphere of an IoT domain, at some point of time comes under inspection in the course of the investigation. An IoT not including proper premeditated solutions for security issues it will principally limit its improvement. So securities, in particular, the ability to detect malicious nodes with preserving support of malicious activities appear as a priority in the successful employment of IoT networks. IoT has three dissimilar layers, each layers security approaches along with defensive methods are briefly described. Blockchain technology will progress the integrity in the real world shared data sets. Primarily blockchain applied in support of recording fiscal transactions where connections encoded (pre-arranged) and kept back with participants, on one occasion transaction confirmed by blockchain it cannot be modeled or else wipe out; if any modification is applied it is easy to map out and recognize. Blockchain technology position in IoT security, challenges, and Research problems in brief discussed. © Springer Nature Switzerland AG 2020. |