Smart City Gnosys

Smart city article details

Title A Sensor Network Approach For Violence Detection In Smart Cities Using Deep Learning
ID_Doc 4582
Authors Baba, M; Gui, V; Cernazanu, C; Pescaru, D
Year 2019
Published SENSORS, 19, 7
DOI http://dx.doi.org/10.3390/s19071676
Abstract Citizen safety in modern urban environments is an important aspect of life quality. Implementation of a smart city approach to video surveillance depends heavily on the capability of gathering and processing huge amounts of live urban data. Analyzing data from high bandwidth surveillance video streams provided by large size distributed sensor networks is particularly challenging. We propose here an efficient method for automatic violent behavior detection designed for video sensor networks. Known solutions to real-time violence detection are not suitable for implementation in a resource-constrained environment due to the high processing power requirements. Our algorithm achieves real-time processing on a Raspberry PI-embedded architecture. To ensure separation of temporal and spatial information processing we employ a computationally effective cascaded approach. It consists of a deep neural network followed by a time domain classifier. In contrast with current approaches, the deep neural network input is fed exclusively with motion vector features extracted directly from the MPEG encoded video stream. As proven by results, we achieve state-of-the-art performance, while running on a low computational resources embedded architecture.
Author Keywords sensor networks; deep learning; action classification; violence detection; smart cities


Similar Articles


Id Similarity Authors Title Published
61134 View0.907Khan H.; Yuan X.; Qingge L.; Roy K.Violence Detection From Industrial Surveillance Videos Using Deep LearningIEEE Access, 13 (2025)
34805 View0.903Azzakhnini M.; Saidi H.; Azough A.; Tairi H.; Qjidaa H.Lavid: A Lightweight And Autonomous Smart Camera System For Urban Violence Detection And GeolocationComputers, 14, 4 (2025)
7918 View0.895Khan M.; Gueaieb W.; Saddik A.E.; De Masi G.; Karray F.An Efficient Violence Detection Approach For Smart Cities Surveillance SystemProceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023 (2023)
3466 View0.889Elzein A.; Basaran E.; Yang Y.D.; Qaraqe M.A Novel Multi-Scale Violence And Public Gathering Dataset For Crowd Behavior ClassificationFrontiers in Computer Science, 6 (2024)
18135 View0.888Al-Mamun Provath M.; Rahman M.; Deb K.; Kumar Dhar P.; Shimamura T.Deepguard: Enhancing Violence Detection In Smart Cities Through Deep LearningIEEE Access, 13 (2025)
60873 View0.887Khan M.; Saddik A.E.; Gueaieb W.; De Masi G.; Karray F.Vd-Net: An Edge Vision-Based Surveillance System For Violence DetectionIEEE Access, 12 (2024)
950 View0.882Ullah F.U.M.; Obaidat M.S.; Ullah A.; Muhammad K.; Hijji M.; Baik S.W.A Comprehensive Review On Vision-Based Violence Detection In Surveillance VideosACM Computing Surveys, 55, 10 (2023)
8959 View0.881Mumtaz N.; Ejaz N.; Habib S.; Mohsin S.M.; Tiwari P.; Band S.S.; Kumar N.An Overview Of Violence Detection Techniques: Current Challenges And Future DirectionsArtificial Intelligence Review, 56, 5 (2023)
1323 View0.879Song Z.; Zhang W.; Chen D.A Deep Fusion Network For Violence RecognitionProceedings - 2022 4th International Conference on Intelligent Information Processing, IIP 2022 (2022)
22444 View0.878Ren X.; Fan W.; Wang Y.Efficiently Adapting Large Pre-Trained Models For Real-Time Violence Recognition In Smart City SurveillanceJournal of Real-Time Image Processing, 21, 4 (2024)