Smart City Gnosys

Smart city article details

Title Lavid: A Lightweight And Autonomous Smart Camera System For Urban Violence Detection And Geolocation
ID_Doc 34805
Authors Azzakhnini M.; Saidi H.; Azough A.; Tairi H.; Qjidaa H.
Year 2025
Published Computers, 14, 4
DOI http://dx.doi.org/10.3390/computers14040140
Abstract With the rise of digital video technologies and the proliferation of processing methods and storage systems, video-surveillance systems have received increasing attention over the last decade. However, the spread of cameras installed in public and private spaces makes it more difficult for human operators to perform real-time analysis of the large amounts of data produced by surveillance systems. Due to the advancement of artificial intelligence methods, many automatic video analysis tasks like violence detection have been studied from a research perspective, and are even beginning to be commercialized in industrial solutions. Nevertheless, most of these solutions adopt centralized architectures with costly servers utilized to process streaming videos sent from different cameras. Centralized architectures do not present the ideal solution due to the high cost, processing time issues, and network bandwidth overhead. In this paper, we propose a lightweight autonomous system for the detection and geolocation of violent acts. Our proposed system, named LAVID, is based on a depthwise separable convolution model (DSCNN) combined with a bidirectional long-short-term memory network (BiLSTM) and implemented on a lightweight smart camera. We provide in this study a lightweight video-surveillance system consisting of low-cost autonomous smart cameras that are capable of detecting and identifying harmful behavior and geolocate violent acts that occur over a covered area in real-time. Our proposed system, implemented using Raspberry Pi boards, represents a cost-effective solution with interoperability features making it an ideal IoT solution to be integrated with other smart city infrastructure. Furthermore, our approach, implemented using optimized deep learning models and evaluated on several public datasets, has shown good results in term of accuracy compared to state of the art methods while optimizing reducing power and computational requirements. © 2025 by the authors.
Author Keywords deep learning; real-time video-surveillance system; smart cameras; violence detection


Similar Articles


Id Similarity Authors Title Published
4582 View0.903Baba, M; Gui, V; Cernazanu, C; Pescaru, DA Sensor Network Approach For Violence Detection In Smart Cities Using Deep LearningSENSORS, 19, 7 (2019)
7918 View0.901Khan M.; Gueaieb W.; Saddik A.E.; De Masi G.; Karray F.An Efficient Violence Detection Approach For Smart Cities Surveillance SystemProceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023 (2023)
950 View0.901Ullah F.U.M.; Obaidat M.S.; Ullah A.; Muhammad K.; Hijji M.; Baik S.W.A Comprehensive Review On Vision-Based Violence Detection In Surveillance VideosACM Computing Surveys, 55, 10 (2023)
57685 View0.901Huszar V.D.; Adhikarla V.K.; Negyesi I.; Krasznay C.Toward Fast And Accurate Violence Detection For Automated Video Surveillance ApplicationsIEEE Access, 11 (2023)
61134 View0.899Khan H.; Yuan X.; Qingge L.; Roy K.Violence Detection From Industrial Surveillance Videos Using Deep LearningIEEE Access, 13 (2025)
60873 View0.893Khan M.; Saddik A.E.; Gueaieb W.; De Masi G.; Karray F.Vd-Net: An Edge Vision-Based Surveillance System For Violence DetectionIEEE Access, 12 (2024)
8959 View0.89Mumtaz N.; Ejaz N.; Habib S.; Mohsin S.M.; Tiwari P.; Band S.S.; Kumar N.An Overview Of Violence Detection Techniques: Current Challenges And Future DirectionsArtificial Intelligence Review, 56, 5 (2023)
3466 View0.889Elzein A.; Basaran E.; Yang Y.D.; Qaraqe M.A Novel Multi-Scale Violence And Public Gathering Dataset For Crowd Behavior ClassificationFrontiers in Computer Science, 6 (2024)
18135 View0.884Al-Mamun Provath M.; Rahman M.; Deb K.; Kumar Dhar P.; Shimamura T.Deepguard: Enhancing Violence Detection In Smart Cities Through Deep LearningIEEE Access, 13 (2025)
17972 View0.884Yadav R.; Gupta A.; Chauhan J.; Rawat R.Deep Learning-Based Smart Surveillance SystemLecture Notes in Networks and Systems, 1005 LNNS (2024)