Smart City Gnosys

Smart city article details

Title A Novel Multi-Scale Violence And Public Gathering Dataset For Crowd Behavior Classification
ID_Doc 3466
Authors Elzein A.; Basaran E.; Yang Y.D.; Qaraqe M.
Year 2024
Published Frontiers in Computer Science, 6
DOI http://dx.doi.org/10.3389/fcomp.2024.1242690
Abstract Dependable utilization of computer vision applications, such as smart surveillance, requires training deep learning networks on datasets that sufficiently represent the classes of interest. However, the bottleneck in many computer vision applications lies in the limited availability of adequate datasets. One particular application that is of great importance for the safety of cities and crowded areas is smart surveillance. Conventional surveillance methods are reactive and often ineffective in enable real-time action. However, smart surveillance is a key component of smart and proactive security in a smart city. Motivated by a smart city application which aims at the automatic identification of concerning events for alerting law-enforcement and governmental agencies, we craft a large video dataset that focuses on the distinction between small-scale violence, large-scale violence, peaceful gatherings, and natural events. This dataset classifies public events along two axes, the size of the crowd observed and the level of perceived violence in the crowd. We name this newly-built dataset the Multi-Scale Violence and Public Gathering (MSV-PG) dataset. The videos in the dataset go through several pre-processing steps to prepare them to be fed into a deep learning architecture. We conduct several experiments on the MSV-PG datasets using a ResNet3D, a Swin Transformer and an R(2 + 1)D architecture. The results achieved by these models when trained on the MSV-PG dataset, 88.37%, 89.76%, and 89.3%, respectively, indicate that the dataset is well-labeled and is rich enough to train deep learning models for automatic smart surveillance for diverse scenarios. Copyright © 2024 Elzein, Basaran, Yang and Qaraqe.
Author Keywords computer vision; crowd analysis; human action recognition; smart surveillance; violence detection


Similar Articles


Id Similarity Authors Title Published
18135 View0.914Al-Mamun Provath M.; Rahman M.; Deb K.; Kumar Dhar P.; Shimamura T.Deepguard: Enhancing Violence Detection In Smart Cities Through Deep LearningIEEE Access, 13 (2025)
57685 View0.905Huszar V.D.; Adhikarla V.K.; Negyesi I.; Krasznay C.Toward Fast And Accurate Violence Detection For Automated Video Surveillance ApplicationsIEEE Access, 11 (2023)
950 View0.905Ullah F.U.M.; Obaidat M.S.; Ullah A.; Muhammad K.; Hijji M.; Baik S.W.A Comprehensive Review On Vision-Based Violence Detection In Surveillance VideosACM Computing Surveys, 55, 10 (2023)
22444 View0.902Ren X.; Fan W.; Wang Y.Efficiently Adapting Large Pre-Trained Models For Real-Time Violence Recognition In Smart City SurveillanceJournal of Real-Time Image Processing, 21, 4 (2024)
60873 View0.902Khan M.; Saddik A.E.; Gueaieb W.; De Masi G.; Karray F.Vd-Net: An Edge Vision-Based Surveillance System For Violence DetectionIEEE Access, 12 (2024)
61134 View0.901Khan H.; Yuan X.; Qingge L.; Roy K.Violence Detection From Industrial Surveillance Videos Using Deep LearningIEEE Access, 13 (2025)
19248 View0.896Alshamsi A.; Ali N.A.Detection Of Anomalies In Crowds Using Smart City Infrastructure And Machine LearningProceedings - IEEE Global Communications Conference, GLOBECOM (2024)
7918 View0.895Khan M.; Gueaieb W.; Saddik A.E.; De Masi G.; Karray F.An Efficient Violence Detection Approach For Smart Cities Surveillance SystemProceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023 (2023)
34805 View0.889Azzakhnini M.; Saidi H.; Azough A.; Tairi H.; Qjidaa H.Lavid: A Lightweight And Autonomous Smart Camera System For Urban Violence Detection And GeolocationComputers, 14, 4 (2025)
4582 View0.889Baba, M; Gui, V; Cernazanu, C; Pescaru, DA Sensor Network Approach For Violence Detection In Smart Cities Using Deep LearningSENSORS, 19, 7 (2019)