Smart City Gnosys

Smart city article details

Title Quognn: Quotient Graph Neural Network For Urban Flow Forecasting
ID_Doc 44042
Authors Gou X.; Han P.; Zhang X.
Year 2022
Published Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
DOI http://dx.doi.org/10.1109/BigData55660.2022.10020795
Abstract Urban traffic flow prediction plays a crucial role in smart city management. Since the flow volume of one road (treated as a node in a traffic network) in future time units (after time t) depends on the historical volume (before and including time t) of this road (node) itself and its neighboring roads (nodes), the traffic flow prediction problem has recently been studied by utilizing a spatial-temporal adjacency matrix (AM) of traffic nodes constructed from the historical traffic and node connections. The construction of AM is often based on statistical traffic information before t, instead of using the volume at individual time unit level. In addition, the spatial and temporal relations between traffic nodes are manually fused in AM, rather than in a trainable fusion. In order to conquer these issues, we propose a trainable context enhanced similarity graph, which fuses the unit-level similarity of traffic time series and multiple inter-node contextual relations through a learnable embedding model. In addition, a Quotient Neural Network is proposed to perceive the explicit relation among short-memory flow values and facilitate the forecasting. Based on the two modules, we propose a novel Quotient Graph Neural Network (QuoGNN). Experiments on four real-world benchmark datasets demonstrate the superior performance of our proposed model over the state-of-the-art baselines on multiple evaluation metrics. The implementation of the model and datasets are available1. © 2022 IEEE.
Author Keywords graph neural network; traffic flow forecasting; urban computing


Similar Articles


Id Similarity Authors Title Published
58579 View0.914Zhao J.Traffic Flow Prediction Based On Adjacency Graph And Attention Mechanism2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 (2024)
52568 View0.914Ren H.; Kang J.; Zhang K.Spatio-Temporal Graph-Tcn Neural Network For Traffic Flow Prediction2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022 (2022)
1982 View0.905Sharma A.; Sharma A.; Nikashina P.; Gavrilenko V.; Tselykh A.; Bozhenyuk A.; Masud M.; Meshref H.A Graph Neural Network (Gnn)-Based Approach For Real-Time Estimation Of Traffic Speed In Sustainable Smart CitiesSustainability (Switzerland), 15, 15 (2023)
58677 View0.904Lian P.; Li Y.; Liu B.; Feng X.Traffic Speed Prediction Using Multivariate Time Series Dynamic Graph Neural Network; [基于多元时间序列动态图神经网络的交通速度预测]Journal of Geo-Information Science, 27, 3 (2025)
52517 View0.903Huang X.; Pan Z.; Zhao G.Spatial-Temporal Interactive Graph Convolutional Networks For Traffic Forecasting2024 4th International Conference on Electronic Information Engineering and Computer Technology, EIECT 2024 (2024)
52572 View0.899Tang J.; Qian T.; Liu S.; Du S.; Hu J.; Li T.Spatio-Temporal Latent Graph Structure Learning For Traffic ForecastingProceedings of the International Joint Conference on Neural Networks, 2022-July (2022)
38415 View0.898Zhao W.; Zhang S.; Zhou B.; Wang B.Multi-Spatio-Temporal Fusion Graph Recurrent Network For Traffic ForecastingEngineering Applications of Artificial Intelligence, 124 (2023)
38427 View0.896Zhao L.; Guo B.; Dai C.; Shen Y.; Chen F.; Zhao M.; Hu Y.Multi-Step Trend Aware Graph Neural Network For Traffic Flow ForecastingBig Data Research, 38 (2024)
58593 View0.893Wang X.; Ma Y.; Wang Y.; Jin W.; Wang X.; Tang J.; Jia C.; Yu J.Traffic Flow Prediction Via Spatial Temporal Graph Neural NetworkThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020 (2020)
36944 View0.893Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)