Smart City Gnosys

Smart city article details

Title Traffic Speed Prediction Using Multivariate Time Series Dynamic Graph Neural Network; [基于多元时间序列动态图神经网络的交通速度预测]
ID_Doc 58677
Authors Lian P.; Li Y.; Liu B.; Feng X.
Year 2025
Published Journal of Geo-Information Science, 27, 3
DOI http://dx.doi.org/10.12082/dqxxkx.2025.240641
Abstract [Objectives] With accelerating urbanization and a surge in vehicle numbers, urban traffic systems face immense pressure. Intelligent transportation systems, a vital component of smart cities, are widely employed to improve urban traffic conditions, with traffic speed prediction being a key research focus. However, the complex coupling relationships and dynamically varying characteristics of urban traffic network nodes pose challenges for existing traffic speed prediction methods in accurately capturing dynamic spatio-temporal correlations. Spatiotemporal graph neural networks have proven to be among the most effective models for traffic speed prediction tasks. However, most methods heavily rely on prior knowledge, limiting the flexibility of spatial feature extraction and hindering the dynamic representation of road network topology. Recent approaches, such as adaptive adjacency matrix construction, address the limitations of static graphs. However, they often overlook the synergy between dynamic features and static topology, making it difficult to fully capture the complex fluctuations in traffic flow, which in turn limits prediction accuracy and adaptability. [Methods] To address these challenges, this study formulates urban traffic speed prediction as a multivariate time-series forecasting problem and proposes a traffic speed prediction model based on a Multivariate Time-series Dynamic Graph Neural Network (MTDGNN). Leveraging real-time traffic information and predefined static graph structures, the model adaptively generates dynamic traffic graphs to capture spatial dependencies through a graph learning layer and integrates them with static road network graphs to capture spatial dependencies from multiple perspectives. Meanwhile, the alternating use of graph convolution and temporal convolution modules constructs a multi-level spatial neighborhood and temporal receptive field, fully exploring the spatial and temporal features of traffic data. [Results] The MTDGNN model was tested on real traffic data from 397 road sections in eastern Beijing, collected between April 1, 2017, and May 31, 2017. Its prediction results were compared against nine benchmark models and seven ablation models. Compared to benchmark models, MTDGNN reduced the average MAE by at least 2.24% and the average RMSE by at least 3.98%. [Conclusions] Experimental results demonstrate that the MTDGNN model achieves superior prediction accuracy in MAE, RMSE, and MAPE evaluation metrics, highlighting its robustness and effectiveness in complex traffic scenarios. © 2025 Science Press. All rights reserved.
Author Keywords dynamic graph learning; graph neural network; Intelligent Transportation System; multi-step prediction; multivariate prediction; spatio-temporal feature mining; traffic speed prediction


Similar Articles


Id Similarity Authors Title Published
36944 View0.932Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)
20800 View0.932Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
21283 View0.929Li F.; Feng J.; Yan H.; Jin G.; Yang F.; Sun F.; Jin D.; Li Y.Dynamic Graph Convolutional Recurrent Network For Traffic Prediction: Benchmark And SolutionACM Transactions on Knowledge Discovery from Data, 17, 1 (2023)
21123 View0.925Hu J.; Lin X.; Wang C.Dstgcn: Dynamic Spatial-Temporal Graph Convolutional Network For Traffic PredictionIEEE Sensors Journal, 22, 13 (2022)
1982 View0.924Sharma A.; Sharma A.; Nikashina P.; Gavrilenko V.; Tselykh A.; Bozhenyuk A.; Masud M.; Meshref H.A Graph Neural Network (Gnn)-Based Approach For Real-Time Estimation Of Traffic Speed In Sustainable Smart CitiesSustainability (Switzerland), 15, 15 (2023)
38024 View0.921Yao H.; Chen R.; Xie Z.; Yang J.; Hu M.; Guo J.Mra-Dgcn: Multi-Range Attention-Based Dynamic Graph Convolutional Network For Traffic PredictionProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022 (2022)
52568 View0.919Ren H.; Kang J.; Zhang K.Spatio-Temporal Graph-Tcn Neural Network For Traffic Flow Prediction2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022 (2022)
37214 View0.918Yu W.; Wu S.; Huang M.Mmgfra: A Multiscale Multigraph Learning Framework For Traffic Prediction In Smart CitiesEarth Science Informatics, 16, 3 (2023)
53044 View0.918Meng X.; Xie W.; Cui J.Stmgfn: Spatio-Temporal Multi-Graph Fusion Network For Traffic Flow PredictionLecture Notes in Computer Science, 15291 LNCS (2025)
4879 View0.917Li Y.; Zhao W.; Fan H.A Spatio-Temporal Graph Neural Network Approach For Traffic Flow PredictionMathematics, 10, 10 (2022)