Smart City Gnosys

Smart city article details

Title Multi-Step Trend Aware Graph Neural Network For Traffic Flow Forecasting
ID_Doc 38427
Authors Zhao L.; Guo B.; Dai C.; Shen Y.; Chen F.; Zhao M.; Hu Y.
Year 2024
Published Big Data Research, 38
DOI http://dx.doi.org/10.1016/j.bdr.2024.100482
Abstract Traffic flow prediction plays an important role in smart cities. Although many neural network models already existed that can predict traffic flow, in the face of complex spatio-temporal data, these models still have some shortcomings. Firstly, they although take into account local spatio-temporal relations, ignore global information, leading to inability to capture global trend. Secondly, most models although construct spatio-temporal graphs for convolution, ignore the dynamic characteristics of spatio-temporal graphs, leading to the inability to capture local fluctuation. Finally, the current popular models need to take a lot of training time to obtain better prediction results, resulting in higher computing cost. To this end, we propose a new model: Multi-Step Trend Aware Graph Neural Network (MSTAGNN), which considers the influence of global spatio-temporal information and captures the dynamic characteristics of spatio-temporal graph. It can not only accurately capture local fluctuation, but also extract global trend and dramatically reduce computing cost. The experimental results showed that our proposed model achieved optimal results compared to baseline. Among them, mean absolute error (MAE) was reduced by 6.25% and the total training time was reduced by 79% on the PEMSD8 dataset. The source codes are available at: https://github.com/Vitalitypi/MSTAGNN. © 2024 Elsevier Inc.
Author Keywords Dynamic spatio-temporal convolution; Graph neural network; Intelligent transportation system; Traffic flow forecasting


Similar Articles


Id Similarity Authors Title Published
52568 View0.929Ren H.; Kang J.; Zhang K.Spatio-Temporal Graph-Tcn Neural Network For Traffic Flow Prediction2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022 (2022)
4879 View0.927Li Y.; Zhao W.; Fan H.A Spatio-Temporal Graph Neural Network Approach For Traffic Flow PredictionMathematics, 10, 10 (2022)
52517 View0.922Huang X.; Pan Z.; Zhao G.Spatial-Temporal Interactive Graph Convolutional Networks For Traffic Forecasting2024 4th International Conference on Electronic Information Engineering and Computer Technology, EIECT 2024 (2024)
20800 View0.922Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
58593 View0.921Wang X.; Ma Y.; Wang Y.; Jin W.; Wang X.; Tang J.; Jia C.; Yu J.Traffic Flow Prediction Via Spatial Temporal Graph Neural NetworkThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020 (2020)
35590 View0.92Remmouche B.; Boukraa D.; Zakharova A.; Bouwmans T.; Taffar M.Long-Term Spatio-Temporal Graph Attention Network For Traffic ForecastingExpert Systems with Applications, 288 (2025)
53044 View0.919Meng X.; Xie W.; Cui J.Stmgfn: Spatio-Temporal Multi-Graph Fusion Network For Traffic Flow PredictionLecture Notes in Computer Science, 15291 LNCS (2025)
6252 View0.919Xiao Q.; Xu Y.Adaptive Graph Convolution In Spatio-Temporal Synchronous Networks For Traffic Flow PredictionProceedings of 2024 8th International Conference on Electronic Information Technology and Computer Engineering, EITCE 2024 (2025)
52564 View0.918Zhang N.; Li K.; Zhang X.; Wang W.; Li C.; Kang Y.Spatio-Temporal Graph Network-Based Traffic Forecasting Method2024 4th International Conference on Artificial Intelligence, Robotics, and Communication, ICAIRC 2024 (2024)
58677 View0.917Lian P.; Li Y.; Liu B.; Feng X.Traffic Speed Prediction Using Multivariate Time Series Dynamic Graph Neural Network; [基于多元时间序列动态图神经网络的交通速度预测]Journal of Geo-Information Science, 27, 3 (2025)