Smart City Gnosys

Smart city article details

Title Preliminary Experiment On Point Cloud Collection Through 3D Mobile Crowdsensing
ID_Doc 42928
Authors Watanabe K.; Miyoshi T.; Yamazaki T.
Year 2025
Published Digest of Technical Papers - IEEE International Conference on Consumer Electronics
DOI http://dx.doi.org/10.1109/ICCE63647.2025.10929889
Abstract The utilization of digital twins is highly anticipated for the realization of smart cities, enabling efficient urban management using the internet of things (IoT) and artificial intelligence (AI). However, constructing and maintaining spatial digital twins requires large amounts of spatial information obtained using light detection and ranging (LiDAR). In this study, we develop a mobile crowdsensing system, in which participants capture partial point cloud with various sensing information of urban spaces. We conduct experiments using the proposed system to capture point cloud data and examine its characteristics to verify the effectiveness of real-world sensing. Additionally, we evaluate the performance of removing unreliable points from the captured point cloud using associated sensing information to enhance data quality. © 2025 IEEE.
Author Keywords Digital twin; LiDAR; Mobile crowdsensing; Point cloud; Smart city


Similar Articles


Id Similarity Authors Title Published
42943 View0.947Hasegawa K.; Kase T.; Watanabe K.; Miyoshi T.; Yamazaki T.Preliminary Study On Dynamic Updates Of Spatial Digital Twins Via 3D Mobile CrowdsensingDigest of Technical Papers - IEEE International Conference on Consumer Electronics (2025)
44424 View0.936Kase T.; Hasegawa K.; Watanabe K.; Miyoshi T.; Yamazaki T.Real-Time Point Cloud Visualization For Sustainable Spatial Digital TwinsDigest of Technical Papers - IEEE International Conference on Consumer Electronics (2025)
3536 View0.872Carthen, CD; Zaremehrjardi, A; Le, VD; Cardillo, CG; Strachan, S; Tavakkoli, A; Harris, FC Jr; Dascalu, SMA Novel Spatial Data Pipeline For Streaming Smart City DataINTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 12, 1 (2024)
61740 View0.869Wang Z.; Cao Y.; Jiang K.; Zhou H.; Kang J.; Zhuang Y.; Tian D.; Leung V.C.M.When Crowdsensing Meets Smart Cities: A Comprehensive Survey And New PerspectivesIEEE Communications Surveys and Tutorials, 27, 2 (2025)
4864 View0.864Carthen C.; Zaremehrjardi A.; Le V.; Cardillo C.; Strachan S.; Tavakkoli A.; Dascalu S.M.; Harris F.C.A Spatial Data Pipeline For Streaming Smart City Data2024 IEEE/ACIS 22nd International Conference on Software Engineering Research, Management and Applications, SERA 2024 - Proceedings (2024)
31040 View0.863Du Y.; Issarny V.; Sailhan F.In-Network Collaborative Mobile Crowdsensing2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020 (2020)
37263 View0.86Tony Santhosh G.Mobile Crowdsensing And Remote Sensing In Smart Cities: An IntroductionInternet of Things, Part F4006 (2025)
52423 View0.858Miyoshi T.; Yamazaki T.Spatial Crowdsensing For Self-Growing Digital Twin To Realize City As A ServiceDigest of Technical Papers - IEEE International Conference on Consumer Electronics (2024)
30554 View0.855Supangkat S.H.; Ragajaya R.; Setyadji A.B.Implementation Of Digital Geotwin-Based Mobile Crowdsensing To Support Monitoring System In Smart CitySustainability (Switzerland), 15, 5 (2023)
59331 View0.853Yang B.; Dong Z.; Liang F.; Mi X.Ubiquitous Point Cloud: Theory, Model, And ApplicationsUbiquitous Point Cloud: Theory, Model, and Applications (2024)