Smart City Gnosys

Smart city article details

Title Perceiving Spatiotemporal Traffic Anomalies From Sparse Representation-Modeled City Dynamics
ID_Doc 41597
Authors Gao J.; Zheng D.; Yang S.
Year 2023
Published Personal and Ubiquitous Computing, 27, 3
DOI http://dx.doi.org/10.1007/s00779-020-01474-4
Abstract Early perception of anomaly traffic patterns, both spatially and temporally, is of importance for emergency response in the smart cities. To capture the spatiotemporal correlations among traffic flows for city dynamics modeling in correspondence with normal states, we conduct sparse representation on taxi activity over spatially partitioned cells in a city. We can perceive the deviation from the normal evolution of traffic flows and find the traffic anomalies. This method roots in the ideal of global traffic flow network detection. Therefore, it is more informative than local statistics since traffic flows evolve in a mutually interacting manner to spread out all over the city. The experimental results confirm its predictive power in detecting spatiotemporal traffic anomalies. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
Author Keywords Anomaly detection; Sparse representation; Traffic anomaly; Traffic dynamics


Similar Articles


Id Similarity Authors Title Published
19867 View0.894Zhao Z.; Tang L.; Ren C.; Yang X.; Kan Z.; Li Q.Diagnosing Urban Traffic Anomalies By Integrating Geographic Knowledge And Tensor TheoryGIScience and Remote Sensing, 61, 1 (2024)
34870 View0.889Tenzer M.; Rasheed Z.; Shafique K.Learning Citywide Patterns Of Life From Trajectory MonitoringGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (2022)
4883 View0.885Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
11043 View0.877He Q.; Xia D.; Li J.; Yang J.; Hu Y.; Li Y.; Li H.Attention-Based Spatiotemporal Adaptive Graph Diffusion Convolutional Network For Traffic Flow PredictionTransportation Research Record (2025)
37566 View0.876Lei X.; Mei H.; Shi B.; Wei H.Modeling Network-Level Traffic Flow Transitions On Sparse DataProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2022)
28517 View0.874Lohrer A.; Binder J.J.; Kröger P.Group Anomaly Detection For Spatio-Temporal Collective Behaviour Scenarios In Smart CitiesProceedings of the 15th ACM SIGSPATIAL International Workshop on Computational Transportation Science, IWCTS 2022 (2022)
4890 View0.873Zhang Y.; Zhang F.A Spatiotemporal Neural Network Model For City Traffic PredictionProceedings of SPIE - The International Society for Optical Engineering, 12970 (2023)
38047 View0.872Yang S.; Wu Q.; Wang Y.; Zhou Z.Mstdfgrn: A Multi-View Spatio-Temporal Dynamic Fusion Graph Recurrent Network For Traffic Flow PredictionComputers and Electrical Engineering, 123 (2025)
36400 View0.872Wang B.; Cai C.; Zhang X.; Zhao C.; Zhang C.; Zhang Y.Mapstsf: Efficient Traffic Prediction Via Hybrid Mamba 2-Transformer Spatiotemporal Modeling And Cross Adaptive Periodic Sparse ForecastingJournal of Supercomputing, 81, 7 (2025)
52582 View0.871Hu J.; Wang C.; Lin X.Spatio-Temporal Pyramid Networks For Traffic ForecastingLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14169 LNAI (2023)