Smart City Gnosys

Smart city article details

Title Mapstsf: Efficient Traffic Prediction Via Hybrid Mamba 2-Transformer Spatiotemporal Modeling And Cross Adaptive Periodic Sparse Forecasting
ID_Doc 36400
Authors Wang B.; Cai C.; Zhang X.; Zhao C.; Zhang C.; Zhang Y.
Year 2025
Published Journal of Supercomputing, 81, 7
DOI http://dx.doi.org/10.1007/s11227-025-07328-1
Abstract Traffic flow prediction is a critical yet challenging task due to the complex spatiotemporal dependencies in road networks. We propose MapsTSF, a novel framework that enhances traffic forecasting by integrating three innovative components. Spatial path embedding uses multiple traversal algorithms to capture dynamic spatial flow patterns across road networks. The hybrid Mamba2-transformer model combines Mamba2’s selective state-space modeling with transformer’s global attention to effectively capture intricate spatiotemporal dependencies. Additionally, the cross adaptive periodic sparse forecasting mechanism decouples periodic and trend features, reducing computational overhead while preserving high accuracy. Experiments on real-world datasets demonstrate that MapsTSF outperforms baseline methods by an average of 18.80% in MAE, 15.69% in RMSE, and 19.80% in MAPE. With its scalable and efficient design, MapsTSF is well-suited for real-time traffic management in smart cities and navigation applications, providing precise and reliable forecasts for large-scale, dynamic road networks. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Author Keywords Mamba; Spatial–temporal modeling; Traffic flow prediction; Transformer


Similar Articles


Id Similarity Authors Title Published
58770 View0.911Cheng S.; Qu S.; Zhang J.Transfer-Mamba: Selective State Space Models With Spatio-Temporal Knowledge Transfer For Few-Shot Traffic Prediction Across CitiesSimulation Modelling Practice and Theory, 140 (2025)
38040 View0.909Li W.; Chen J.; Zhang Y.; Sun R.; Xia S.; Pan Z.; Luo J.Msgformer: Revolutionizing Traffic Flow Prediction With Multiscale And Gated Transformer ArchitectureIEEE Internet of Things Journal, 12, 2 (2025)
20800 View0.907Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
29828 View0.906Dai R.; Xu S.; Gu Q.; Ji C.; Liu K.Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction With Navigation DataProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
38390 View0.905Tian R.; Wang C.; Hu J.; Ma Z.Multi-Scale Spatial-Temporal Aware Transformer For Traffic PredictionInformation Sciences, 648 (2023)
38415 View0.901Zhao W.; Zhang S.; Zhou B.; Wang B.Multi-Spatio-Temporal Fusion Graph Recurrent Network For Traffic ForecastingEngineering Applications of Artificial Intelligence, 124 (2023)
36944 View0.9Tian R.; Wang C.; Hu J.; Ma Z.Mfstgn: A Multi-Scale Spatial-Temporal Fusion Graph Network For Traffic PredictionApplied Intelligence, 53, 19 (2023)
38047 View0.899Yang S.; Wu Q.; Wang Y.; Zhou Z.Mstdfgrn: A Multi-View Spatio-Temporal Dynamic Fusion Graph Recurrent Network For Traffic Flow PredictionComputers and Electrical Engineering, 123 (2025)
4883 View0.897Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
21408 View0.896Zhang H.; Xie Q.; Shou Z.; Gao Y.Dynamic Spatial-Temporal Memory Augmentation Network For Traffic PredictionSensors, 24, 20 (2024)