Smart City Gnosys

Smart city article details

Title Spatio-Temporal Pyramid Networks For Traffic Forecasting
ID_Doc 52582
Authors Hu J.; Wang C.; Lin X.
Year 2023
Published Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14169 LNAI
DOI http://dx.doi.org/10.1007/978-3-031-43412-9_20
Abstract Traffic flow forecasting is an important part of smart city construction. Accurate traffic flow forecasting helps traffic management agencies to make timely adjustments, thus improving pedestrian travel efficiency and road utilization. However, this work is challenging due to the dynamic stochastic factors affecting the variation of traffic data and the spatially hidden behavior. Existing approaches generally use attention mechanism or graph neural networks to model correlation in temporal and spatial terms, and despite some progress in performance, they still ignore a number of practical situations: (1) Anomalous data due to traffic accidents or traffic congestion can affect the accuracy of modeling in the current moment and further create potential optimization problems for model training. (2) According to the directedness of the road, the hiding behavior between nodes should also be unidirectional and dynamic. In this paper, we propose a dynamic graph network with a pyramid structure, named PYNet, and use it for traffic flow forecasting tasks. Specifically, first we propose the Pyramid Constructor for transforming multivariate time series into a pyramid network with a multilevel structure, where the higher the level, the larger the range of time scales represented. Second, we perform Trend-Aware Attention top-down in the pyramid network, which gradually enables the lower-level time series to learn their long-term dependence in multiples, and effectively reduces the impact of outliers. Furthermore, to fully capture the hidden behavior in the spatial dimension, we learn an adaptive unidirectional graph and perform forward and backward diffusion convolution on the graph. Experimental results on two types of datasets show that PYNet outperforms the state-of-the-art baseline. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Author Keywords Pyramid structure; Spatio-temporal data; Traffic flow forecasting


Similar Articles


Id Similarity Authors Title Published
52517 View0.917Huang X.; Pan Z.; Zhao G.Spatial-Temporal Interactive Graph Convolutional Networks For Traffic Forecasting2024 4th International Conference on Electronic Information Engineering and Computer Technology, EIECT 2024 (2024)
11043 View0.917He Q.; Xia D.; Li J.; Yang J.; Hu Y.; Li Y.; Li H.Attention-Based Spatiotemporal Adaptive Graph Diffusion Convolutional Network For Traffic Flow PredictionTransportation Research Record (2025)
35590 View0.915Remmouche B.; Boukraa D.; Zakharova A.; Bouwmans T.; Taffar M.Long-Term Spatio-Temporal Graph Attention Network For Traffic ForecastingExpert Systems with Applications, 288 (2025)
4883 View0.914Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
20800 View0.914Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
4879 View0.913Li Y.; Zhao W.; Fan H.A Spatio-Temporal Graph Neural Network Approach For Traffic Flow PredictionMathematics, 10, 10 (2022)
52568 View0.911Ren H.; Kang J.; Zhang K.Spatio-Temporal Graph-Tcn Neural Network For Traffic Flow Prediction2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022 (2022)
58579 View0.911Zhao J.Traffic Flow Prediction Based On Adjacency Graph And Attention Mechanism2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 (2024)
58677 View0.911Lian P.; Li Y.; Liu B.; Feng X.Traffic Speed Prediction Using Multivariate Time Series Dynamic Graph Neural Network; [基于多元时间序列动态图神经网络的交通速度预测]Journal of Geo-Information Science, 27, 3 (2025)
58593 View0.91Wang X.; Ma Y.; Wang Y.; Jin W.; Wang X.; Tang J.; Jia C.; Yu J.Traffic Flow Prediction Via Spatial Temporal Graph Neural NetworkThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020 (2020)