Smart City Gnosys

Smart city article details

Title Leveraging Graph Neural Network With Lstm For Traffic Speed Prediction
ID_Doc 35083
Authors Lu Z.; Lv W.; Xie Z.; Du B.; Huang R.
Year 2019
Published Proceedings - 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019
DOI http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00056
Abstract Accurate traffic forecasting plays an important role in the smart city and is of great significance for urban traffic planning, management, and traffic control. However, road speed prediction is a challenge task due to the complex topological structure of road networks and stochastic traffic patterns. For capturing spatial and temporal dependencies simultaneously, in this paper we propose a novel graph neural network based traffic speed forecasting model, the graph Long short term Memory (GLSTM) model which consists Graph neural network (GNN) and Long short term Memory. To the best of our knowledge, this is the first time to combine LSTM and GNN to feed graph-structured data as input for train models in traffic speed prediction. More specifically, at first we construct a unweighted directed graph from road network and feed LSTM cell with graph-structured data. After that, we train the whole model based on encoder-decoder architecture and message-passing mechanism of GNN. Experiments show that our proposed method is able to utilize road structure to capture spatial-temporal dependencies based on GNN while capture long-term dependencies based on LSTM. The result of real world dataset shows that proposed method outperform state-of-the-art baseline methods. © 2019 IEEE.
Author Keywords Gnn; Lstm; Neural network; Traffic speed prediction


Similar Articles


Id Similarity Authors Title Published
24041 View0.93Ghosh A.; Giacobbe M.; Rafiq M.T.; Puliafito A.; Giorgi R.Enhancing Traffic Prediction With Spatio-Temporal Deep Learning: A Gcn-Lstm Hybrid Model2025 14th Mediterranean Conference on Embedded Computing, MECO 2025 - Proceedings (2025)
58649 View0.914Wu Z.; Huang M.; Zhao A.; Lan Z.Traffic Prediction Based On Gcn-Lstm ModelJournal of Physics: Conference Series, 1972, 1 (2021)
35590 View0.903Remmouche B.; Boukraa D.; Zakharova A.; Bouwmans T.; Taffar M.Long-Term Spatio-Temporal Graph Attention Network For Traffic ForecastingExpert Systems with Applications, 288 (2025)
11045 View0.903Yin S.; Wang J.; Cui Z.; Wang Y.Attention-Enabled Network-Level Traffic Speed Prediction2020 IEEE International Smart Cities Conference, ISC2 2020 (2020)
52572 View0.902Tang J.; Qian T.; Liu S.; Du S.; Hu J.; Li T.Spatio-Temporal Latent Graph Structure Learning For Traffic ForecastingProceedings of the International Joint Conference on Neural Networks, 2022-July (2022)
4796 View0.899Ratnam V.S.; Suganya E.; Al-Farouni M.H.; Jeyanthi S.; Rajani Kanth T.V.A Smart Traffic Flow Optimization Using Graph Convolutional Network With Graph Long Short-Term Memory2nd IEEE International Conference on Integrated Intelligence and Communication Systems, ICIICS 2024 (2024)
44472 View0.895Nie X.; Peng J.; Wu Y.; Gupta B.B.; El-Latif A.A.A.Real-Time Traffic Speed Estimation For Smart Cities With Spatial Temporal Data: A Gated Graph Attention Network ApproachBig Data Research, 28 (2022)
1982 View0.895Sharma A.; Sharma A.; Nikashina P.; Gavrilenko V.; Tselykh A.; Bozhenyuk A.; Masud M.; Meshref H.A Graph Neural Network (Gnn)-Based Approach For Real-Time Estimation Of Traffic Speed In Sustainable Smart CitiesSustainability (Switzerland), 15, 15 (2023)
28556 View0.894Jinia S.N.; Azad S.B.; Akter R.; Dipto T.R.; Khaliluzzaman M.Gtn-Gcn: Real-Time Traffic Forecasting Using Graph Convolutional Network And TransformerApplied Computational Intelligence and Soft Computing, 2025, 1 (2025)
58677 View0.891Lian P.; Li Y.; Liu B.; Feng X.Traffic Speed Prediction Using Multivariate Time Series Dynamic Graph Neural Network; [基于多元时间序列动态图神经网络的交通速度预测]Journal of Geo-Information Science, 27, 3 (2025)