Smart City Gnosys

Smart city article details

Title Enhancing Traffic Prediction With Spatio-Temporal Deep Learning: A Gcn-Lstm Hybrid Model
ID_Doc 24041
Authors Ghosh A.; Giacobbe M.; Rafiq M.T.; Puliafito A.; Giorgi R.
Year 2025
Published 2025 14th Mediterranean Conference on Embedded Computing, MECO 2025 - Proceedings
DOI http://dx.doi.org/10.1109/MECO66322.2025.11049131
Abstract This paper presents a hybrid deep learning model that combines Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) networks for spatio-temporal traffic speed prediction. By leveraging the strengths of GCN in capturing spatial dependencies and LSTM in modeling temporal patterns, the model is capable of accurately predicting traffic speeds across a network of sensors. We evaluate the model on two distinct datasets: METR-LA and PEMS-BAY, demonstrating its effectiveness in both short-term and long-term forecasting. Additionally, the introduction of an attention mechanism further enhances the model's predictive accuracy by focusing on the most relevant sensors. © 2025 IEEE.
Author Keywords cyber-physical systems; deep learning; embedded computing; graph convolutional networks; smart cities; traffic prediction


Similar Articles


Id Similarity Authors Title Published
35083 View0.93Lu Z.; Lv W.; Xie Z.; Du B.; Huang R.Leveraging Graph Neural Network With Lstm For Traffic Speed PredictionProceedings - 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019 (2019)
35590 View0.93Remmouche B.; Boukraa D.; Zakharova A.; Bouwmans T.; Taffar M.Long-Term Spatio-Temporal Graph Attention Network For Traffic ForecastingExpert Systems with Applications, 288 (2025)
28556 View0.929Jinia S.N.; Azad S.B.; Akter R.; Dipto T.R.; Khaliluzzaman M.Gtn-Gcn: Real-Time Traffic Forecasting Using Graph Convolutional Network And TransformerApplied Computational Intelligence and Soft Computing, 2025, 1 (2025)
44472 View0.927Nie X.; Peng J.; Wu Y.; Gupta B.B.; El-Latif A.A.A.Real-Time Traffic Speed Estimation For Smart Cities With Spatial Temporal Data: A Gated Graph Attention Network ApproachBig Data Research, 28 (2022)
29827 View0.927Chen B.; Hu K.; Li Y.; Miao L.Hybrid Spatio-Temporal Graph Convolution Network For Short-Term Traffic ForecastingIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2022-October (2022)
11045 View0.925Yin S.; Wang J.; Cui Z.; Wang Y.Attention-Enabled Network-Level Traffic Speed Prediction2020 IEEE International Smart Cities Conference, ISC2 2020 (2020)
29828 View0.921Dai R.; Xu S.; Gu Q.; Ji C.; Liu K.Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction With Navigation DataProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
20800 View0.92Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
52587 View0.916Priya K.; Omkar K.; Naresh R.; Venkatesh K.Spatio-Temporal Traffic Prediction In Urban Area Using Convolutional Temporal Network System6th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2025 - Proceedings (2025)
4883 View0.913Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)