13349  | 0.901 | Zhang X.; Zhang J.; Wang C.; Lin F.; Li Z. | Canet: Convolutional Attention-Based Network For Multivariate Time Series Anomaly Detection | 2022 7th International Conference on Intelligent Computing and Signal Processing, ICSP 2022 (2022) |
22095  | 0.86 | Hao J.; Chen P.; Chen J.; Li X. | Effectively Detecting And Diagnosing Distributed Multivariate Time Series Anomalies Via Unsupervised Federated Hypernetwork | Information Processing and Management, 62, 4 (2025) |
6743  | 0.86 | Zhu H.; Liu S.; Jiang F. | Adversarial Training Of Lstm-Ed Based Anomaly Detection For Complex Time-Series In Cyber-Physical-Social Systems | Pattern Recognition Letters, 164 (2022) |
20803  | 0.856 | Wang S.; Chen Y.; Xu H.; Hu J.; Zeng P.; Hu Z. | Dngnn: Efficient Deep Noisy Graph Neural Network For Spatio-Temporal Series Forecasting | 2025 2nd International Conference on Algorithms, Software Engineering and Network Security, ASENS 2025 (2025) |
35807  | 0.856 | Huang L.; Huang J.; Li H.; Cui J. | Lstgcn: Inductive Spatial Temporal Imputation Using Long Short-Term Dependencies | ACM Transactions on Knowledge Discovery from Data, 18, 9 (2024) |
1384  | 0.853 | He J.; Dong M.; Bi S.; Zhao W.; Liao X. | A Deep Neural Network For Anomaly Detection And Forecasting For Multivariate Time Series In Smart City | 9th IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER 2019 (2019) |
59799  | 0.85 | Toor A.A.; Lin J.-C.; Gran E.G. | Uocad2: An Unsupervised Online Contextual Anomaly Detection Approach Using Optimized Hyperparameters Of Rnns For Multivariate Time Series | Internet of Things (The Netherlands), 33 (2025) |