1384  | 0.887 | He J.; Dong M.; Bi S.; Zhao W.; Liao X. | A Deep Neural Network For Anomaly Detection And Forecasting For Multivariate Time Series In Smart City | 9th IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER 2019 (2019) |
22095  | 0.882 | Hao J.; Chen P.; Chen J.; Li X. | Effectively Detecting And Diagnosing Distributed Multivariate Time Series Anomalies Via Unsupervised Federated Hypernetwork | Information Processing and Management, 62, 4 (2025) |
9617  | 0.858 | Bachechi C.; Rollo F.; Po L.; Quattrini F. | Anomaly Detection In Multivariate Spatial Time Series: A Ready-To-Use Implementation | International Conference on Web Information Systems and Technologies, WEBIST - Proceedings, 2021-October (2021) |
23843  | 0.853 | Kirubavathi G.; Pulliyasseri A.; Rajesh A.; Ajayan A.; Alfarhood S.; Safran M.; Alfarhood M.; Shin J. | Enhancing Iot Resilience At The Edge: A Resource-Efficient Framework For Real-Time Anomaly Detection In Streaming Data | CMES - Computer Modeling in Engineering and Sciences, 143, 3 (2025) |
6743  | 0.85 | Zhu H.; Liu S.; Jiang F. | Adversarial Training Of Lstm-Ed Based Anomaly Detection For Complex Time-Series In Cyber-Physical-Social Systems | Pattern Recognition Letters, 164 (2022) |
3214  | 0.85 | Zhang J.; Wang X.; Yang Y.; Miao H.; Yang S. | A Novel Anomaly Detection Method For Multivariate Time Series Based On Spatial-Temporal Graph Learning | Journal of King Saud University - Computer and Information Sciences, 37, 1 (2025) |