44435  | 0.906 | Kulambayev B.; Gleb B.; Katayev N.; Menglibay I.; Momynkulov Z. | Real-Time Road Damage Detection System On Deep Learning Based Image Analysis | International Journal of Advanced Computer Science and Applications, 15, 9 (2024) |
14630  | 0.905 | Thangaraju S.; Nagarajan M.; Ganesan M.; Raja S.; Sirotiya A.; Jasrotia B. | Cogniguardianroadscape: Advancing Safety Through Ai-Driven Roadway Audits | SAE Technical Papers (2025) |
41479  | 0.904 | Kothai R.; Prabakaran N.; Srinivasa Murthy Y.V.; Reddy Cenkeramaddi L.; Kakani V. | Pavement Distress Detection, Classification, And Analysis Using Machine Learning Algorithms: A Survey | IEEE Access, 12 (2024) |
44425  | 0.903 | Bhosale S.B.; Ponnusamy S. | Real-Time Pothole Detection Using Yolov7: An Efficient Deep Learning Approach For Road Safety And Maintenance | 2025 International Conference on Data Science and Business Systems, ICDSBS 2025 (2025) |
15438  | 0.897 | Assemlali H.; Bouhsissin S.; Sael N. | Computer Vision-Based Detection And Classification Of Road Obstacles: Systematic Literature Review | IEEE Access (2025) |
44340  | 0.892 | Mehajabin N.; Ma Z.; Wang Y.; Tohidypour H.R.; Nasiopoulos P. | Real-Time Deep Learning Based Road Deterioration Detection For Smart Cities | International Conference on Wireless and Mobile Computing, Networking and Communications, 2022-October (2022) |
35274  | 0.892 | Ji Y.; Zhang A.; Chen Z.; Wei M.; Yu Z.; Zhang X.; Han L. | Lightweight Road Damage Detection Algorithm Based On The Improved Yolo Model | 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation, AIEA 2024 (2024) |
17939  | 0.891 | Huang Y.-T.; Jahanshahi M.R.; Shen F.; Mondal T.G. | Deep Learning-Based Autonomous Road Condition Assessment Leveraging Inexpensive Rgb And Depth Sensors And Heterogeneous Data Fusion: Pothole Detection And Quantification | Journal of Transportation Engineering Part B: Pavements, 149, 2 (2023) |
816  | 0.888 | Fatali R.; Safarli G.; El Zant S.; Amhaz R. | A Comparative Study Of Yolo V4 And V5 Architectures On Pavement Cracks Using Region-Based Detection | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13927 LNCS (2023) |
11330  | 0.887 | Lv Z.; Cheng C.; Lv H. | Automatic Identification Of Pavement Cracks In Public Roads Using An Optimized Deep Convolutional Neural Network Model | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381, 2254 (2023) |