Smart City Gnosys

Smart city article details

Title Deep Learning-Based Autonomous Road Condition Assessment Leveraging Inexpensive Rgb And Depth Sensors And Heterogeneous Data Fusion: Pothole Detection And Quantification
ID_Doc 17939
Authors Huang Y.-T.; Jahanshahi M.R.; Shen F.; Mondal T.G.
Year 2023
Published Journal of Transportation Engineering Part B: Pavements, 149, 2
DOI http://dx.doi.org/10.1061/JPEODX.PVENG-1194
Abstract Poor condition of roads is a major factor for traffic accidents and damage to vehicles. A significant portion of car accidents is attributed to severe three-dimensional (3D) pavement distresses such as potholes, ruttings, and ravelings. Insufficient road condition assessment is responsible for the poor condition of roads. To inspect the condition of the pavement surfaces more frequently and efficiently, an inexpensive data acquisition system was developed that consists of a consumer-grade RGB-D sensor and an edge computing device that can be mounted on vehicles and collect data while driving vehicles. The RGB-D sensor is used for collecting two-dimensional (2D) color images and corresponding 3D depth data, and the lightweight edge computing device is used to control the RGB-D sensor and store the collected data. An RGB-D pavement surface data set is generated. Furthermore, encoder-decoder deep convolutional neural networks (DCNNs) consisting of one or two encoders, and one decoder trained on heterogeneous RGB-D pavement surface data are used for pothole segmentation. Comprehensive experiments using different depth encoding techniques and data fusion methods including data- and feature-level fusion were performed to investigate the efficacy of defect detection using DCNNs. Experimental results demonstrate that the feature-level RGB-D data fusion based on the surface normal encoding of depth data outperform other approaches in terms of segmentation accuracy, where the mean intersection over union (IoU) over 10-fold cross-validation of 0.82 is achieved that shows a 7.7% improvement compared with a network trained only on RGB data. In addition, this study explores the efficacy of indirectly using depth information for pothole detection when depth data are not available. Additionally, the semantic segmentation results were utilized to quantify the severity level of the potholes assisting in maintenance decision-making. The result from these comprehensive experiments using an RGB-D pavement surface data set gathered through the proposed data acquisition system is a stepping stone for opportunistic data collection and processing through crowdsourcing and Internet of Things in future smart cities for effective road assessment. Finally, suggestions about the improvement of the proposed system are discussed. © 2023 American Society of Civil Engineers.
Author Keywords


Similar Articles


Id Similarity Authors Title Published
44435 View0.91Kulambayev B.; Gleb B.; Katayev N.; Menglibay I.; Momynkulov Z.Real-Time Road Damage Detection System On Deep Learning Based Image AnalysisInternational Journal of Advanced Computer Science and Applications, 15, 9 (2024)
16106 View0.904Lakshminarayanan S.; Konidhala J.Convolutional Neural Network For Pothole Identification In Urban RoadsInternational Journal Of Advances In Signal And Image Sciences, 10, 1 (2024)
41479 View0.897Kothai R.; Prabakaran N.; Srinivasa Murthy Y.V.; Reddy Cenkeramaddi L.; Kakani V.Pavement Distress Detection, Classification, And Analysis Using Machine Learning Algorithms: A SurveyIEEE Access, 12 (2024)
17906 View0.894Chu H.-H.; Saeed M.R.; Rashid J.; Mehmood M.T.; Ahmad I.; Iqbal R.S.; Ali G.Deep Learning Method To Detect The Road Cracks And Potholes For Smart CitiesComputers, Materials and Continua, 75, 1 (2023)
15438 View0.893Assemlali H.; Bouhsissin S.; Sael N.Computer Vision-Based Detection And Classification Of Road Obstacles: Systematic Literature ReviewIEEE Access (2025)
7069 View0.891Bhatt A.K.; Biswas S.Ai-Enabled Road Health Monitoring System For Smart CitiesLecture Notes in Electrical Engineering, 1146 LNEE (2024)
31709 View0.891Awan A.Z.; Ji J.C.; Uzair M.; Ullah I.; Riaz W.; Gong T.Innovative Road Distress Detection (Ir-Dd): An Efficient And Scalable Deep Learning ApproachPeerJ Computer Science, 10 (2024)
204 View0.888Alshammari S.; Song S.3Pod: Federated Learning-Based 3 Dimensional Pothole Detection For Smart TransportationISC2 2022 - 8th IEEE International Smart Cities Conference (2022)
44425 View0.883Bhosale S.B.; Ponnusamy S.Real-Time Pothole Detection Using Yolov7: An Efficient Deep Learning Approach For Road Safety And Maintenance2025 International Conference on Data Science and Business Systems, ICDSBS 2025 (2025)
11330 View0.881Lv Z.; Cheng C.; Lv H.Automatic Identification Of Pavement Cracks In Public Roads Using An Optimized Deep Convolutional Neural Network ModelPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381, 2254 (2023)