Smart City Gnosys

Smart city article details

Title Energy Consumption Outlier Detection With Ai Models In Modern Cities: A Case Study From North-Eastern Mexico
ID_Doc 23175
Authors Solís-Villarreal J.-A.; Soto-Mendoza V.; Navarro-Acosta J.A.; Ruiz-y-Ruiz E.
Year 2024
Published Algorithms, 17, 8
DOI http://dx.doi.org/10.3390/a17080322
Abstract The development of smart cities will require the construction of smart buildings. Smart buildings will demand the incorporation of elements for efficient monitoring and control of electrical consumption. The development of efficient AI algorithms is needed to generate more accurate electricity consumption predictions; therefore; anomaly detection in electricity consumption predictions has become an important research topic. This work focuses on the study of the detection of anomalies in domestic electrical consumption in Mexico. A predictive machine learning model of future electricity consumption was generated to evaluate various anomaly-detection techniques. Their effectiveness in identifying outliers was determined, and their performance was documented. A 30-day forecast of electrical consumption and an anomaly-detection model have been developed using isolation forest. Isolation forest successfully captured up to 75% of the anomalies. Finally, the Shapley values have been used to generate an explanation of the results of a model capable of detecting anomalous data for the Mexican context. © 2024 by the authors.
Author Keywords artificial intelligence; data-driven approach; energy efficiency; household energy consumption; outlier detection; smart cities


Similar Articles


Id Similarity Authors Title Published
19180 View0.897Mund C.; Altherr L.C.Detecting Anomalous Energy Consumptions In Smart Buildings - An Overview Of Two Unsupervised TechniquesProceedings - 2022 International Conference on Computational Science and Computational Intelligence, CSCI 2022 (2022)
9623 View0.889Galeb B.; Saad H.; Bashar H.; Al-Majdi K.; Al-Hilali A.Anomaly Detection In Smart Home Electrical Appliances Using Machine Learning With Statistical Algorithms And Optimized Time Series AlgorithmsJournal of Mechanics of Continua and Mathematical Sciences, 19, 5 (2024)
17271 View0.882Christantonis K.; Tjortjis C.Data Mining For Smart Cities: Predicting Electricity Consumption By Classification10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019 (2019)
35909 View0.877Malki A.; Atlam E.-S.; Gad I.Machine Learning Approach Of Detecting Anomalies And Forecasting Time-Series Of Iot DevicesAlexandria Engineering Journal, 61, 11 (2022)
9645 View0.875Zhou W.; Chen C.; Yan Q.; Li B.; Liu K.; Zheng Y.; Yang H.; Xiao H.; Su S.Anomaly Usage Behavior Detection Based On Multi-Source Water And Electricity Consumption InformationIEEE Access, 13 (2025)
7647 View0.872Kommey B.; Tamakloe E.; Kponyo J.J.; Tchao E.T.; Agbemenu A.S.; Nunoo-Mensah H.An Artificial Intelligence-Based Non-Intrusive Load Monitoring Of Energy Consumption In An Electrical Energy System Using A Modified K-Nearest Neighbour AlgorithmIET Smart Cities, 6, 3 (2024)
25413 View0.871Ali A.; Khan L.; Javaid N.; Aslam M.; Aldegheishem A.; Alrajeh N.Exploiting Machine Learning To Tackle Peculiar Consumption Of Electricity In Power Grids: A Step Towards Building Green Smart CitiesIET Generation, Transmission and Distribution, 18, 3 (2024)
23972 View0.871Janjua J.I.; Ahmad R.; Abbas S.; Mohammed A.S.; Khan M.S.; Daud A.; Abbas T.; Khan M.A.Enhancing Smart Grid Electricity Prediction With The Fusion Of Intelligent Modeling And Xai IntegrationInternational Journal of Advanced and Applied Sciences, 11, 5 (2024)
37138 View0.868Ali A.; Khan L.; Javaid N.; Bouk S.H.; Aldegheishem A.; Alrajeh N.Mitigating Anomalous Electricity Consumption In Smart Cities Using An Ai-Based Stacked-Generalization TechniqueIET Renewable Power Generation, 19, 1 (2025)
9618 View0.866Ali M.; Scandurra P.; Moretti F.; Sherazi H.H.R.Anomaly Detection In Public Street Lighting Data Using Unsupervised ClusteringIEEE Transactions on Consumer Electronics, 70, 1 (2024)