19250  | 0.873 | Śmiałkowski T.; Czyżewski A. | Detection Of Anomalies In The Operation Of A Road Lighting System Based On Data From Smart Electricity Meters | Energies, 15, 24 (2022) |
9645  | 0.872 | Zhou W.; Chen C.; Yan Q.; Li B.; Liu K.; Zheng Y.; Yang H.; Xiao H.; Su S. | Anomaly Usage Behavior Detection Based On Multi-Source Water And Electricity Consumption Information | IEEE Access, 13 (2025) |
19180  | 0.871 | Mund C.; Altherr L.C. | Detecting Anomalous Energy Consumptions In Smart Buildings - An Overview Of Two Unsupervised Techniques | Proceedings - 2022 International Conference on Computational Science and Computational Intelligence, CSCI 2022 (2022) |
11166  | 0.868 | Smialkowski T.; Czyzewski A. | Autoencoder Application For Anomaly Detection In Power Consumption Of Lighting Systems | IEEE Access, 11 (2023) |
23175  | 0.866 | Solís-Villarreal J.-A.; Soto-Mendoza V.; Navarro-Acosta J.A.; Ruiz-y-Ruiz E. | Energy Consumption Outlier Detection With Ai Models In Modern Cities: A Case Study From North-Eastern Mexico | Algorithms, 17, 8 (2024) |
10269  | 0.859 | Ali M.; Scandurra P.; Moretti F.; Blaso L. | Architecting A Big Data-Driven Software Architecture For Smart Street Lighting | Proceedings - IEEE 20th International Conference on Software Architecture Companion, ICSA-C 2023 (2023) |
2991  | 0.852 | Aslam Z.; Javaid N.; Javed M.U.; Aslam M.; Aldegheishem A.; Alrajeh N. | A New Clustering-Based Semi-Supervised Method To Restrict The Users From Anomalous Electricity Consumption: Supporting Urbanization | Electrical Engineering, 106, 5 (2024) |
35909  | 0.85 | Malki A.; Atlam E.-S.; Gad I. | Machine Learning Approach Of Detecting Anomalies And Forecasting Time-Series Of Iot Devices | Alexandria Engineering Journal, 61, 11 (2022) |