Smart City Gnosys

Smart city article details

Title Distributed Deep Reinforcement Learning Architecture For Task Offloading In Autonomous Iot Systems
ID_Doc 20621
Authors Boni A.K.C.S.; Hablatou Y.; Hassan H.; Drira K.
Year 2022
Published ACM International Conference Proceeding Series
DOI http://dx.doi.org/10.1145/3567445.3567454
Abstract Autonomous IoT systems require the development of good automation algorithms capable of handling a huge number of IoT devices such as in smart cities. Deep Reinforcement Learning (DRL) is a powerful automation technique that can be used in massive systems thanks to its ability to deal with big state spaces. Moreover, it adapts quickly to changes in the system by reinforcement learning, making the automation algorithm very flexible. However, using DRL relies generally on centralized agent architecture making it more exposed to communication failures. In this paper, we propose a distributed architecture to solve the task offloading problem in autonomous IoT systems where learning is achieved in a master agent while decision making is delegated to IoT devices. This architecture is more resilient as decisions are made locally and interactions between IoT devices and the master agent are less frequent and not blocking. We tested this architecture in the ns3-gym environment and our results show very good resilience of this architecture. © 2022 Copyright held by the owner/author(s).
Author Keywords Autonomous IoT systems; Deep Reinforcement Learning; Distributed; Task offloading


Similar Articles


Id Similarity Authors Title Published
54435 View0.958Chabi Sika Boni A.K.; Hassan H.; Drira K.Task Offloading In Autonomous Iot Systems Using Deep Reinforcement Learning And Ns3-GymACM International Conference Proceeding Series (2021)
38114 View0.912Neelamegam G.; Venkatesan R.; Ramya S.R.; Ramya R.S.; Akshya J.; Sundarrajan M.; Choudhry M.D.Multi-Agent Systems For Autonomous Iot Network Management Using Distributed Reinforcement LearningProceedings of 2025 3rd International Conference on Intelligent Systems, Advanced Computing, and Communication, ISACC 2025 (2025)
46071 View0.906Cui X.Resource Allocation In Iot Edge Computing Networks Based On Reinforcement LearningAdvances in Transdisciplinary Engineering, 70 (2025)
26370 View0.897Han Y.; Li D.; Qi H.; Ren J.; Wang X.Federated Learning-Based Computation Offloading Optimization In Edge Computing-Supported Internet Of ThingsACM International Conference Proceeding Series (2019)
38436 View0.88Matsuoka H.; Moustafa A.Multi-Task Deep Reinforcement Learning For Iot Service SelectionInternational Conference on Agents and Artificial Intelligence, 3 (2022)
7415 View0.879Moghaddasi K.; Rajabi S.; Gharehchopogh F.S.; Ghaffari A.An Advanced Deep Reinforcement Learning Algorithm For Three-Layer D2D-Edge-Cloud Computing Architecture For Efficient Task Offloading In The Internet Of ThingsSustainable Computing: Informatics and Systems, 43 (2024)
38090 View0.879Jiao T.; Feng X.; Guo C.; Wang D.; Song J.Multi-Agent Deep Reinforcement Learning For Efficient Computation Offloading In Mobile Edge ComputingComputers, Materials and Continua, 76, 3 (2023)
23430 View0.874Sellami B.; Hakiri A.; Yahia S.B.; Berthou P.Energy-Aware Task Scheduling And Offloading Using Deep Reinforcement Learning In Sdn-Enabled Iot NetworkComputer Networks, 210 (2022)
1212 View0.87Liu P.; Peng K.; Zhao B.A Cybertwin-Driven Intelligent Offloading Method For Iov Applications Using Drl In Smart CitiesProceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022 (2022)
18071 View0.869Bushehrian O.; Moazeni A.Deep Reinforcement Learning-Based Optimal Deployment Of Iot Machine Learning Jobs In Fog Computing ArchitectureComputing, 107, 1 (2025)