Smart City Gnosys

Smart city article details

Title Diffusion Probabilistic Modeling For Fine-Grained Urban Traffic Flow Inference With Relaxed Structural Constraint
ID_Doc 19929
Authors Xu X.; Wei Y.; Wang P.; Luo X.; Zhou F.; Trajcevski G.
Year 2023
Published ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
DOI http://dx.doi.org/10.1109/ICASSP49357.2023.10096169
Abstract Inferring the citywide urban traffic flows is critical for numerous smart city applications such as urban planning, traffic control, and transportation management. Urban traffic flow inference problem aims to generate fine-grained flow maps from the coarse-grained ones. It is still challenging due to the lack of handling uncertainties of flow distributions and complex external factors that affect the inference performance. In this work, we propose a diffusion probabilistic augmentation-based network for considering the uncertainties of urban flows with a relaxed structural constraint and a disentangled scheme for flow map and external factor learning. Experiments are conducted on four large-scale urban flow datasets, and the results show that our method achieves significant performance improvements over strong baselines. © 2023 IEEE.
Author Keywords diffusion probabilistic modeling; Fine-grained urban flow inference; mobile sensing; urban computing


Similar Articles


Id Similarity Authors Title Published
6377 View0.904Zheng Y.; Wu J.; Cai Z.; Wang S.; Wang J.Adatm: Fine-Grained Urban Flow Inference With Adaptive Knowledge Transfer Across Multiple CitiesInternational Conference on Information and Knowledge Management, Proceedings (2024)
19922 View0.898Zheng Y.; Zhong L.; Wang S.; Yang Y.; Gu W.; Zhang J.; Wang J.Diffuflow: Robust Fine-Grained Urban Flow Inference With Denoising Diffusion ModelInternational Conference on Information and Knowledge Management, Proceedings (2023)
26538 View0.891Ouyang K.; Liang Y.; Liu Y.; Tong Z.; Ruan S.; Zheng Y.; Rosenblum D.S.Fine-Grained Urban Flow InferenceIEEE Transactions on Knowledge and Data Engineering, 34, 6 (2022)
26539 View0.883Yu H.; Xu X.; Zhong T.; Zhou F.Fine-Grained Urban Flow Inference Via Normalizing Flow (Student Abstract)Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, 36 (2022)
60279 View0.869Liang Y.; Ouyang K.; Jing L.; Ruan S.; Liu Y.; Zhang J.; Rosenblum D.S.; Zheng Y.Urbanfm: Inferring Fine-Grained Urban FlowsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
52510 View0.867Xu X.; Wang Z.; Gao Q.; Zhong T.; Hui B.; Zhou F.; Trajcevski G.Spatial-Temporal Contrasting For Fine-Grained Urban Flow InferenceIEEE Transactions on Big Data, 9, 6 (2023)
26540 View0.866Li J.; Wang S.; Zhang J.; Miao H.; Zhang J.; Yu P.S.Fine-Grained Urban Flow Inference With Incomplete DataIEEE Transactions on Knowledge and Data Engineering, 35, 6 (2023)
26541 View0.862Liang Y.; Ouyang K.; Sun J.; Wang Y.; Zhang J.; Zheng Y.; Rosenblum D.; Zimmermann R.Fine-Grained Urban Flow PredictionThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (2021)
38739 View0.859Qin J.; Jia Y.; Tong Y.; Chai H.; Ding Y.; Wang X.; Fang B.; Liao Q.Muse-Net: Disentangling Multi-Periodicity For Traffic Flow ForecastingProceedings - International Conference on Data Engineering (2024)
11043 View0.857He Q.; Xia D.; Li J.; Yang J.; Hu Y.; Li Y.; Li H.Attention-Based Spatiotemporal Adaptive Graph Diffusion Convolutional Network For Traffic Flow PredictionTransportation Research Record (2025)