Smart City Gnosys

Smart city article details

Title Coms2T: A Complementary Spatiotemporal Learning System For Data-Adaptive Model Evolution
ID_Doc 15460
Authors Zhou Z.; Huang Q.; Wang B.; Hou J.; Yang K.; Liang Y.; Zheng Y.; Wang Y.
Year 2025
Published IEEE Transactions on Pattern Analysis and Machine Intelligence
DOI http://dx.doi.org/10.1109/TPAMI.2025.3576805
Abstract Spatiotemporal (ST) learning has become a crucial technique to enable smart cities and sustainable urban development. Current ST learning models capture the heterogeneity via various spatial convolution and temporal evolution blocks. However, rapid urbanization leads to fluctuating distributions in urban data and city structures, resulting in existing methods suffering generalization and data adaptation issues. Despite efforts, existing methods fail to deal with newly arrived observations, and the limitation of those methods with generalization capacity lies in the repeated training that leads to inconvenience, inefficiency and resource waste. Motivated by complementary learning in neuroscience, we introduce a prompt-based complementary spatiotemporal learning termed ComS2T, to empower the evolution of models for data adaptation. We first disentangle the neural architecture into two disjoint structures, a stable neocortex for consolidating historical memory, and a dynamic hippocampus for new knowledge update. Then we train the dynamic spatial and temporal prompts by characterizing distribution of main observations to enable prompts adaptive to new data. This data-adaptive prompt mechanism, combined with a two-stage training process, facilitates fine-tuning of the neural architecture conditioned on prompts, thereby enabling efficient adaptation during testing. Extensive experiments validate the efficacy of ComS2T in adapting various spatiotemporal out-of-distribution scenarios while maintaining effective inferences. © 1979-2012 IEEE.
Author Keywords Complementary learning system; OOD generalization; spatiotemporal learning; urban computing


Similar Articles


Id Similarity Authors Title Published
60280 View0.884Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
61766 View0.873Fang Z.; Wu D.; Pan L.; Chen L.; Gao Y.When Transfer Learning Meets Cross-City Urban Flow Prediction: Spatio-Temporal Adaptation MattersIJCAI International Joint Conference on Artificial Intelligence (2022)
44815 View0.869Chen J.; Liu T.; Li R.Region Profile Enhanced Urban Spatio-Temporal Prediction Via Adaptive Meta-LearningInternational Conference on Information and Knowledge Management, Proceedings (2023)
43449 View0.868Zhang Z.; Zhao X.; Liu Q.; Zhang C.; Ma Q.; Wang W.; Zhao H.; Wang Y.; Liu Z.Promptst: Prompt-Enhanced Spatio-Temporal Multi-Attribute PredictionInternational Conference on Information and Knowledge Management, Proceedings (2023)
34890 View0.865Yao H.; Liu Y.; Wei Y.; Tang X.; Li Z.Learning From Multiple Cities: A Meta-Learning Approach For Spatial-Temporal PredictionThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (2019)
13501 View0.864Li S.; Li H.; Li X.; Xu Y.; Lin Z.; Jiang H.Causal Intervention Is What Large Language Models Need For Spatio-Temporal ForecastingIEEE Transactions on Cybernetics (2025)
11537 View0.857Li T.; Zhang J.; Bao K.; Liang Y.; Li Y.; Zheng Y.Autost: Efficient Neural Architecture Search For Spatio-Temporal PredictionProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
17754 View0.857Hu J.; Liang Y.; Fan Z.; Liu L.; Yin Y.; Zimmermann R.Decoupling Long- And Short-Term Patterns In Spatiotemporal InferenceIEEE Transactions on Neural Networks and Learning Systems, 35, 11 (2024)
11538 View0.856Zhang Z.; Zhao X.; Miao H.; Zhang C.; Zhao H.; Zhang J.Autostl: Automated Spatio-Temporal Multi-Task LearningProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37 (2023)
52571 View0.856Wang S.; Miao H.; Li J.; Cao J.Spatio-Temporal Knowledge Transfer For Urban Crowd Flow Prediction Via Deep Attentive Adaptation NetworksIEEE Transactions on Intelligent Transportation Systems, 23, 5 (2022)