Smart City Gnosys

Smart city article details

Title A Deep Urban Hotspots Prediction Framework With Modeling Geography-Semantic Dynamics; [顾及地理-语义动态的城市热点预测框架]
ID_Doc 1399
Authors Sha H.; Jin G.; Cheng G.; Huang J.; Wu K.
Year 2022
Published Journal of Geo-Information Science, 24, 1
DOI http://dx.doi.org/10.12082/dqxxkx.2022.210245
Abstract Urban hotspots prediction is a basic but significant task for future urban management. Accurate urban hotspots prediction can improve the efficiency of urban planning and security construction. Existing deep learning methods mainly adopt geographic grid maps, provided urban network, or external data to capture spatiotemporal dynamics. However, we observe that mining some latent self-semantics from raw data and fusing them with geospatial based grid images can also improve the performance of spatiotemporal predictions. In this paper, we propose Geographic-Semantic Ensemble Neural Network (GSEN), a novel deep learning approach, to stack geographical prediction neural network and semantical prediction neutral network. GSEN model integrates the structures of Predictive Recurrent Neural Network (PredRNN), Graph Convolutional Predictive Recurrent Neural Network (GC-PredRNN), and Ensemble Layer to capture spatiotemporal dynamics from different views. Furthermore, this model can also be correlated with some latent high-level dynamics in the real-world without any external data. We evaluate our proposed model on three different real-world datasets. The experimental results demonstrate the generalization and effectiveness of GSEN in different urban hotspots spatiotemporal prediction tasks. © 2022, Science Press. All right reserved.
Author Keywords City hotspot; Graph convolutional neural network; network; Predictive recurrent neural; Semantic modeling; Smart city; Spatiotemporal prediction


Similar Articles


Id Similarity Authors Title Published
60016 View0.898Jin G.; Sha H.; Xi Z.; Huang J.Urban Hotspot Forecasting Via Automated Spatio-Temporal Information FusionApplied Soft Computing, 136 (2023)
52833 View0.882Zhao L.; Gao M.; Wang Z.St-Gsp: Spatial-Temporal Global Semantic Representation Learning For Urban Flow PredictionWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining (2022)
60280 View0.875Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
18141 View0.871Zhang C.; Cai L.; Chen M.; Li X.; Cong G.Deepmeshcity: A Deep Learning Model For Urban Grid PredictionACM Transactions on Knowledge Discovery from Data, 18, 6 (2024)
52571 View0.858Wang S.; Miao H.; Li J.; Cao J.Spatio-Temporal Knowledge Transfer For Urban Crowd Flow Prediction Via Deep Attentive Adaptation NetworksIEEE Transactions on Intelligent Transportation Systems, 23, 5 (2022)
52567 View0.858Jin G.; Liang Y.; Fang Y.; Shao Z.; Huang J.; Zhang J.; Zheng Y.Spatio-Temporal Graph Neural Networks For Predictive Learning In Urban Computing: A SurveyIEEE Transactions on Knowledge and Data Engineering, 36, 10 (2024)
26541 View0.856Liang Y.; Ouyang K.; Sun J.; Wang Y.; Zhang J.; Zheng Y.; Rosenblum D.; Zimmermann R.Fine-Grained Urban Flow PredictionThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (2021)
4890 View0.856Zhang Y.; Zhang F.A Spatiotemporal Neural Network Model For City Traffic PredictionProceedings of SPIE - The International Society for Optical Engineering, 12970 (2023)
11537 View0.854Li T.; Zhang J.; Bao K.; Liang Y.; Li Y.; Zheng Y.Autost: Efficient Neural Architecture Search For Spatio-Temporal PredictionProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
59338 View0.852Fang J.; Chen L.; Chai D.; Hong Y.; Xie X.; Chen L.; Wang L.Uctb: An Urban Computing Tool Box For All-In-One Spatiotemporal Prediction SolutionCCF Transactions on Pervasive Computing and Interaction (2025)