Smart City Gnosys

Smart city article details

Title Uctb: An Urban Computing Tool Box For All-In-One Spatiotemporal Prediction Solution
ID_Doc 59338
Authors Fang J.; Chen L.; Chai D.; Hong Y.; Xie X.; Chen L.; Wang L.
Year 2025
Published CCF Transactions on Pervasive Computing and Interaction
DOI http://dx.doi.org/10.1007/s42486-025-00187-y
Abstract Spatiotemporal prediction (STP) service is one of the key infrastructure applications in smart cities. Currently, most of the existing STP services are constructed following the workflow of building deep learning (DL) applications while neglecting the importance of domain knowledge and region partition. However, the performance and interpretability of STP are highly related to them. As a result, there is an urgent requirement to develop a thorough and tailored workflow for STP services. To address this gap, we propose a novel workflow including two factors above as intermediate procedures. Based on the workflow, we design and implement an STP toolbox called Urban Computing Tool Box (UCTB) assisting practitioners in the rapid construction of STP services, which can manage multiple spatiotemporal domain knowledge, support various region partition algorithms, and possess state-of-the-art models simultaneously. The relevant code and supporting documents have been open-sourced at https://github.com/uctb/UCTB. © China Computer Federation (CCF) 2025.
Author Keywords Software toolbox; Spatiotemporal prediction; Urban computing; Workflow


Similar Articles


Id Similarity Authors Title Published
59339 View0.996Fang J.; Chen L.; Chai D.; Hong Y.; Xie X.; Chen L.; Wang L.Uctb: An Urban Computing Tool Box For Building Spatiotemporal Prediction ServicesProceedings - 2024 IEEE International Conference on Software Services Engineering, SSE 2024 (2024)
59340 View0.899Chen L.; Chai D.; Wang L.Uctb: Spatiotemporal Crowd Flow Prediction ToolboxJournal of Frontiers of Computer Science and Technology, 16, 4 (2022)
59616 View0.881Chiu S.-M.; Liou Y.-S.; Chen Y.-C.; Lee C.; Shang R.-K.; Chang T.-Y.; Zimmermann R.Universal Transfer Framework For Urban Spatiotemporal Knowledge Based On Radial Basis FunctionIEEE Transactions on Artificial Intelligence, 5, 9 (2024)
52567 View0.875Jin G.; Liang Y.; Fang Y.; Shao Z.; Huang J.; Zhang J.; Zheng Y.Spatio-Temporal Graph Neural Networks For Predictive Learning In Urban Computing: A SurveyIEEE Transactions on Knowledge and Data Engineering, 36, 10 (2024)
60280 View0.87Li Z.; Xia L.; Tang J.; Xu Y.; Shi L.; Xia L.; Yin D.; Huang C.Urbangpt: Spatio-Temporal Large Language ModelsProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2024)
17869 View0.867Zou X.; Yan Y.; Hao X.; Hu Y.; Wen H.; Liu E.; Zhang J.; Li Y.; Li T.; Zheng Y.; Liang Y.Deep Learning For Cross-Domain Data Fusion In Urban Computing: Taxonomy, Advances, And OutlookInformation Fusion, 113 (2025)
52833 View0.867Zhao L.; Gao M.; Wang Z.St-Gsp: Spatial-Temporal Global Semantic Representation Learning For Urban Flow PredictionWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining (2022)
11537 View0.866Li T.; Zhang J.; Bao K.; Liang Y.; Li Y.; Zheng Y.Autost: Efficient Neural Architecture Search For Spatio-Temporal PredictionProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)
52528 View0.865Sao A.; Gottschalk S.Spatially Constrained Transformer With Efficient Global Relation Modelling For Spatio-Temporal PredictionFrontiers in Artificial Intelligence and Applications, 392 (2024)
53039 View0.862Hong Y.; Chen L.; Wang L.; Xie X.; Luo G.; Wang C.; Chen L.Stkopt: Automated Spatio-Temporal Knowledge Optimization For Traffic PredictionWWW 2025 - Proceedings of the ACM Web Conference (2025)