Smart City Gnosys

Smart city article details

Title Alternating Magnetic Field-Enhanced Triboelectric Nanogenerator For Low-Speed Flow Energy Harvesting
ID_Doc 7269
Authors Zhang B.; Gao Q.; Li W.; Zhu M.; Li H.; Cheng T.; Wang Z.L.
Year 2023
Published Advanced Functional Materials, 33, 42
DOI http://dx.doi.org/10.1002/adfm.202304839
Abstract Low-speed flow energy, such as breezes and rivers, which are abundant in smart agriculture and smart cities, faces significant challenges in efficient harvesting as an untapped sustainable energy source. This study proposes an alternating magnetic field-enhanced triboelectric nanogenerator (AMF-TENG) for low-speed flow energy harvesting, and demonstrates its feasibility through experimental results. AMF-TENG's minimum cut-in speed is 1 m s−1, thereby greatly expanding its wind energy harvesting range. When the wind speed is 1–5 m s−1, the open-circuit voltage (VOC) is 20.9–179.3 V. The peak power is 0.68 mW at 5 m s−1. In a durability test of 100 K cycles, the VOC decreases from 188.4 to 174.2 V but remain at 92.5% of the initial value. furthermore, the AMF-TENG can harvest low-speed flow energy from the natural environment to power temperature and humidity sensors and wireless light intensity sensor in smart agriculture. This study provides a promising method for low-speed flow energy harvesting in distributed applications. © 2023 Wiley-VCH GmbH.
Author Keywords alternating magnetic field; low-speed flow energy; self-powered; smart agriculture; triboelectric nanogenerators


Similar Articles


Id Similarity Authors Title Published
59016 View0.893Li G.; Cui J.; Liu T.; Zheng Y.; Hao C.; Hao X.; Xue C.Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester With A Low Startup Wind Speed In Urban Self-Powered SensingMicromachines, 14, 2 (2023)
59014 View0.889Zi Y.; Guo H.; Wang J.; Zhang C.; Chen X.; Zhao Q.Triboelectric Nanogenerators: Technology, Applications, And CommercializationTriboelectric Nanogenerators: Technology, Applications and Commercialization (2025)
40738 View0.887Ismail M.F.; Al-mahasne M.M.; Borowski G.; Alsaqoor S.; Alenezi A.; Al-Odienat A.Optimized Low-Speed Wind Energy Harvesters: Enhancing Piezoelectric And Triboelectric Performance For Urban ApplicationsJournal of Ecological Engineering, 26, 9 (2025)
6626 View0.879Sreejith S.; Ajayan J.; Reddy N.V.U.; Mathew J.K.; Manikandan M.Advances In Self-Powered Sensing With Triboelectric Nanogenerators: A ReviewSensing and Imaging, 26, 1 (2025)
29161 View0.877Kharbouche E.; Ferreira W.L.; Garcia D.; Bernier F.; Blayac S.Highly Integrated Planar Airflow Energy Harvester For Self-Powered Air Quality MonitoringISC2 2022 - 8th IEEE International Smart Cities Conference (2022)
31911 View0.869Ahmed A.; Hassan I.; El-Kady M.F.; Radhi A.; Jeong C.K.; Selvaganapathy P.R.; Zu J.; Ren S.; Wang Q.; Kaner R.B.Integrated Triboelectric Nanogenerators In The Era Of The Internet Of ThingsAdvanced Science, 6, 24 (2019)
6501 View0.868Tang Y.; Fu H.; Xu B.Advanced Design Of Triboelectric Nanogenerators For Future Eco-Smart CitiesAdvanced Composites and Hybrid Materials, 7, 3 (2024)
19012 View0.866Xiao Y.Design, Fabrication, And Application Study Of Droplet Tube Based Triboelectric NanogeneratorsTribology in Industry, 45, 4 (2023)
29080 View0.862He S.; Yang Z.; Wang J.; Wang X.; Zhang J.; Guo X.; Li H.; Cheng T.; Wang Z.L.; Cheng X.High-Accuracy Liquid Flow Monitoring Via Triboelectric Nanogenerator Combined With Bionic Design And Common-Mode Interference SuppressionAdvanced Functional Materials, 35, 8 (2025)
4056 View0.861Shen J.; Yang Z.; Yang Y.; Yang B.; Song Y.; Cheng X.; Lai Z.; Zhao H.; Ji L.; Zhu Z.; Cheng J.A Remote Monitoring System For Wind Speed And Direction Based On Non-Contact Triboelectric NanogeneratorNano Energy, 133 (2025)