Smart City Gnosys

Smart city article details

Title Traffic Prediction Using Gps Based Cloud Data Through Rnn-Lstm-Cnn Models: Addressing Road Congestion, Safety, And Sustainability In Smart Cities
ID_Doc 58657
Authors Selvan C.; Senthil Kumar R.; Iwin Thanakumar Joseph S.; Malin Bruntha P.; Amanullah M.; Arulkumar V.
Year 2025
Published SN Computer Science, 6, 2
DOI http://dx.doi.org/10.1007/s42979-025-03737-4
Abstract Smart cities that use technology and data for efficiency optimization, sustainability, and well-being of citizens face a lot of challenges. Because all of the aforementioned challenges share a common characteristic of complexity, achieving success will need careful preparation and coordinated effort. This research presents a novel approach utilizing deep learning models to address issues about road congestion, specifically by offering secure routes for pedestrians and cyclists. The Global Positioning System (GPS) data stored in the cloud is used as input for the proposed work. In the proposed work, the flow of vehicles, their speed, and the occupancy have been predicted. The need for deep learning to resolve the traffic problem is that deep learning methods are highly efficient when compared to statistical techniques as they provide more than 90% of accuracy in forecasting. The novel approaches used in this paper are integrated Recurring Neural Networks (RNN)-Long Short Term Memory (LSTM)- Convolutional Neural Networks (CNN) to form RLC (RNN-LSTM-CNN) models. The system encompasses appropriate methods for improving the transportation system’s efficiency by mitigating environmental impacts. The implementation of Recurrent Neural Networks (RNN) along with Long Short-Term Memory (LSTM) are used to analyze historical traffic flow data by predicting future traffic conditions by optimizing traffic signal timings, traffic flow, and public transportation schedules to reduce idling time and fuel consumption, leading to lower emissions by predicting Electric Vehicle (EV) charging demand patterns, optimize charging stations’ locations and driver routes, and manage energy distribution more efficiently. The proposed Deep Learning-based models perform better when compared to the other methods and hold the potential to transform urban mobility, making it more efficient, safer, and environmentally friendly in the smart cities of the future as it provides higher forecasting accuracy when compared to the statistical and machine learning models.Performance analysis of the proposed work provides a minimum absolute mean error of 17.6, mean absolute precision error of 0.066 and the root square mean error of 28.80 when comparing with the state of the art traffic prediction systems. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
Author Keywords CNN; LSTM; Occupancy; RNN; Speed; Traffic flow prediction


Similar Articles


Id Similarity Authors Title Published
51592 View0.934Pritha A.; Fathima G.Smart Traffic Management: A Deep Learning Revolution In Traffic Prediction - A ReviewIET Conference Proceedings, 2024, 23 (2024)
40920 View0.925Abdullah S.M.; Periyasamy M.; Kamaludeen N.A.; Towfek S.K.; Marappan R.; Kidambi Raju S.; Alharbi A.H.; Khafaga D.S.Optimizing Traffic Flow In Smart Cities: Soft Gru-Based Recurrent Neural Networks For Enhanced Congestion Prediction Using Deep LearningSustainability (Switzerland), 15, 7 (2023)
22656 View0.921Rafalia N.; Moumen I.; Raji F.Z.; Abouchabaka J.Elevating Smart City Mobility Using Rae-Lstm Fusion For Next-Gen Traffic PredictionIndonesian Journal of Electrical Engineering and Computer Science, 35, 1 (2024)
10797 View0.92Zaman M.; Saha S.; Abdelwahed S.Assessing The Suitability Of Different Machine Learning Approaches For Smart Traffic Mobility2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 (2023)
1395 View0.916Tripathi A.N.; Sharma B.A Deep Review: Techniques, Findings And Limitations Of Traffic Flow Prediction Using Machine LearningLecture Notes in Mechanical Engineering (2023)
8489 View0.913Sheeba G.; Selvaganesan J.An Intelligent And Resolute Traffic Management System Using Grcnet-Stmo Model For Smart Vehicular NetworksInternational Journal of Information Technology (Singapore), 16, 8 (2024)
7046 View0.911Rathore S.P.S.; Farhaoui Y.; Aniebonam E.E.; Nagpal T.; Thanuja M.; Kaushik P.Ai-Driven Traffic Congestion Management: A Predictive Analytics Approach For Smart Cities2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2025 (2025)
13624 View0.909Uddin Gilani S.A.; Al-Rajab M.; Bakka M.Challenges And Opportunities In Traffic Flow Prediction: Review Of Machine Learning And Deep Learning Perspectives; [Desafíos Y Oportunidades En La Predicción Del Flujo De Tráfico: Revisión De Las Perspectivas De Aprendizaje Automático Y Aprendizaje Profundo]Data and Metadata, 3 (2024)
58653 View0.909Zafar N.; Haq I.U.; Sohail H.; Chughtai J.-U.-R.; Muneeb M.Traffic Prediction In Smart Cities Based On Hybrid Feature SpaceIEEE Access, 10 (2022)
1982 View0.908Sharma A.; Sharma A.; Nikashina P.; Gavrilenko V.; Tselykh A.; Bozhenyuk A.; Masud M.; Meshref H.A Graph Neural Network (Gnn)-Based Approach For Real-Time Estimation Of Traffic Speed In Sustainable Smart CitiesSustainability (Switzerland), 15, 15 (2023)