Smart City Gnosys

Smart city article details

Title Traffic Prediction In Smart Cities Based On Hybrid Feature Space
ID_Doc 58653
Authors Zafar N.; Haq I.U.; Sohail H.; Chughtai J.-U.-R.; Muneeb M.
Year 2022
Published IEEE Access, 10
DOI http://dx.doi.org/10.1109/ACCESS.2022.3231448
Abstract In smart cities of the future, data will be generated, integrated, processed and utilized from heterogeneous sources and at varying levels of complexity. For urban traffic planning in smart cities, one of the biggest challenges is traffic congestion prediction and its avoidance. Traffic congestion is a complex phenomenon and it is a manifestation of various contributing factors. In addition to vehicular mobility, properties of road network, weather, holidays and peak hours play a significant role in traffic congestion especially on arterial roads within a city. In this paper, we proposed a hybrid GRU-LSTM based deep learning model and applied it on city-wide novel traffic data integrated from heterogeneous sources. We have devised our indigenous data pipeline that is composed of a set of algorithms dealing with map matching, sparsity handling, outlier removal, zero speed adjustments, Open Street Map (OSM) and segment mapping etc. Extensive experimentations have been carried out to demonstrate the improved performance of the proposed method. The comparative analysis reveals that our methodology yields 95 % accuracy that outperforms other deep neural network models. © 2013 IEEE.
Author Keywords deep learning; GRU; Intelligent transportation systems; LSTM; neural networks; traffic congestion


Similar Articles


Id Similarity Authors Title Published
10165 View0.948Zafar N.; Haq I.U.; Chughtai J.-U.-R.; Shafiq O.Applying Hybrid Lstm-Gru Model Based On Heterogeneous Data Sources For Traffic Speed Prediction In Urban AreasSensors, 22, 9 (2022)
40920 View0.913Abdullah S.M.; Periyasamy M.; Kamaludeen N.A.; Towfek S.K.; Marappan R.; Kidambi Raju S.; Alharbi A.H.; Khafaga D.S.Optimizing Traffic Flow In Smart Cities: Soft Gru-Based Recurrent Neural Networks For Enhanced Congestion Prediction Using Deep LearningSustainability (Switzerland), 15, 7 (2023)
22656 View0.913Rafalia N.; Moumen I.; Raji F.Z.; Abouchabaka J.Elevating Smart City Mobility Using Rae-Lstm Fusion For Next-Gen Traffic PredictionIndonesian Journal of Electrical Engineering and Computer Science, 35, 1 (2024)
13624 View0.911Uddin Gilani S.A.; Al-Rajab M.; Bakka M.Challenges And Opportunities In Traffic Flow Prediction: Review Of Machine Learning And Deep Learning Perspectives; [Desafíos Y Oportunidades En La Predicción Del Flujo De Tráfico: Revisión De Las Perspectivas De Aprendizaje Automático Y Aprendizaje Profundo]Data and Metadata, 3 (2024)
58657 View0.909Selvan C.; Senthil Kumar R.; Iwin Thanakumar Joseph S.; Malin Bruntha P.; Amanullah M.; Arulkumar V.Traffic Prediction Using Gps Based Cloud Data Through Rnn-Lstm-Cnn Models: Addressing Road Congestion, Safety, And Sustainability In Smart CitiesSN Computer Science, 6, 2 (2025)
60227 View0.908Jang H.-C.; Chen C.-A.Urban Traffic Flow Prediction Using Lstm And Gru †Engineering Proceedings, 55, 1 (2024)
20250 View0.904Pawar A.B.; Khan S.A.; Baker El-Ebiary Y.A.; Burugari V.K.; Abdufattokhov S.; Saravanan A.; Ghodhbani R.Digital Twin-Based Predictive Analytics For Urban Traffic Optimization And Smart Infrastructure ManagementInternational Journal of Advanced Computer Science and Applications, 16, 5 (2025)
51592 View0.903Pritha A.; Fathima G.Smart Traffic Management: A Deep Learning Revolution In Traffic Prediction - A ReviewIET Conference Proceedings, 2024, 23 (2024)
58592 View0.902Cenni D.; Han Q.Traffic Flow Prediction Using Uber Movement DataLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 594 LNICST (2024)
1395 View0.902Tripathi A.N.; Sharma B.A Deep Review: Techniques, Findings And Limitations Of Traffic Flow Prediction Using Machine LearningLecture Notes in Mechanical Engineering (2023)